


Bila hendak menggunakan Threading vs. Multiprocessing dalam Python?
Threading vs. Multiprocessing: Menangani Cabaran Prestasi Algoritma
Mengenalpasti Masalah
Apabila menggunakan modul threading dan multiprocessing dalam Python untuk pemprosesan selari, adalah penting untuk memahami perbezaan asasnya dan bila untuk menggunakan setiap modul dengan berkesan. Artikel ini menangani aspek-aspek ini dengan meneroka konsep asas dan menyediakan panduan praktikal.
Benang vs. Proses: Memahami Perbezaan Utama
Dalam penyusunan, beberapa utas dilaksanakan serentak dalam satu satu proses, berkongsi data secara lalai. Sebaliknya, pemproses berbilang melibatkan berbilang proses, masing-masing mempunyai ruang memori sendiri dan persekitaran pelaksanaan yang berasingan.
Perbezaan utama ini mempunyai beberapa implikasi:
- Perkongsian Data: Dalam threading, perkongsian data adalah automatik, manakala dalam multiprocessing, ia memerlukan mekanisme eksplisit seperti siri atau perkongsian memori.
- GIL Lock: Global Interpreter Lock (GIL) Python menyekat pelaksanaan serentak kod Python oleh berbilang benang dalam satu proses, berpotensi mengehadkan prestasi. Proses berbilang pemprosesan dikecualikan daripada GIL, membenarkan keselarian sebenar.
- Penyegerakan: Memandangkan benang berkongsi data, mekanisme penyegerakan (mis., kunci) adalah penting untuk mengelakkan rasuah data. Proses, sebaliknya, mempunyai ruang memori yang berasingan dan dengan itu menghapuskan isu ini.
Alir Kawalan dan Giliran Kerja
Menguruskan aliran pelaksanaan selari dengan berkesan pekerjaan memerlukan pemahaman tugasan tugasan dan pengoptimuman sumber. Concurrent.futures menyediakan rangka kerja yang mudah untuk menguruskan kedua-dua utas dan proses sebagai "pekerja" dalam "kolam."
Memilih Antara Benang dan Multiproses
Pilihan antara benang dan multiprocessing bergantung kepada jenis tugasan yang akan dilaksanakan. Threading sesuai apabila pekerjaan adalah bebas dan tidak memerlukan pengiraan yang meluas atau perkongsian data yang ketara. Pemprosesan berbilang diutamakan untuk tugas intensif CPU yang mendapat manfaat daripada keselarian dan boleh dilaksanakan secara berasingan.
Sumber untuk Pemahaman Lanjut
Untuk mendapatkan cerapan menyeluruh tentang mekanisme penjalinan dan berbilang pemprosesan Python, rujuk sumber berikut:
- Dokumentasi Python Rasmi: https://docs.python.org/3/library/threading
- Dokumentasi Python Rasmi: https://docs.python.org/3/library/multiprocessing
- Perbincangan Terperinci tentang Benang GIL dan Python: https://realpython.com/python-gil
- Tutorial Perpustakaan Concurrent.futures: https://docs.python.org/3/library /concurrent.futures
Dengan memanfaatkan sumber ini dan panduan yang disediakan dalam artikel ini, pengaturcara boleh memanfaatkan keupayaan penyusunan benang dan modul berbilang pemprosesan untuk meningkatkan prestasi aplikasi Python mereka.
Atas ialah kandungan terperinci Bila hendak menggunakan Threading vs. Multiprocessing dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Fastapi ...

Menggunakan Python di Terminal Linux ...

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...
