


Bagaimana Menghuraikan Fail Lebar Tetap dalam Python dengan Cekap: Modul Struktur lwn. Penghirisan Rentetan Dioptimumkan?
Menghuraikan Fail Lebar Tetap Dengan Cekap
Fail lebar tetap memberikan cabaran penghuraian yang unik kerana panjang lajurnya yang telah ditetapkan. Mencari cara yang cekap untuk mengekstrak data daripada fail sedemikian adalah penting untuk pemprosesan data.
Pernyataan Masalah
Diberikan fail dengan garis lebar tetap, di mana setiap lajur mewakili nilai tertentu , bangunkan kaedah yang cekap untuk menghuraikan baris ini kepada komponen yang berasingan. Pada masa ini, penghirisan rentetan digunakan, tetapi kebimbangan mengenai kebolehbacaan dan kesesuaiannya untuk fail besar timbul.
Penyelesaian
Dua kaedah penghuraian yang cekap dibentangkan:
Kaedah 1: Menggunakan Modul struct
Modul struct perpustakaan standard Python menyediakan cara yang mudah untuk membongkar data daripada aliran data binari. Ia boleh digunakan dengan fail lebar tetap dengan menentukan rentetan format yang menentukan lebar dan jenis setiap medan. Kaedah ini menawarkan kedua-dua kelajuan dan kesederhanaan.
Contoh:
<code class="python">import struct fieldwidths = (2, -10, 24) fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's') for fw in fieldwidths) # Convert Unicode input to bytes and the result back to Unicode string. unpack = struct.Struct(fmtstring).unpack_from # Alias. parse = lambda line: tuple(s.decode() for s in unpack(line.encode())) print('fmtstring: {!r}, record size: {} chars'.format(fmtstring, struct.calcsize(fmtstring))) line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n' fields = parse(line) print('fields: {}'.format(fields))</code>
Kaedah 2: Menggunakan Penghirisan Rentetan dengan Kompilasi
Walaupun penghirisan rentetan mungkin kelihatan mudah, kelajuannya boleh dipertingkatkan dengan menyusun versi yang lebih cekap menggunakan eval(). Kaedah ini menjana senarai sempadan kepingan yang malar dan oleh itu lebih pantas untuk dilaksanakan.
Contoh (Dioptimumkan):
<code class="python">def make_parser(fieldwidths): cuts = tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths)) pads = tuple(fw < 0 for fw in fieldwidths) # bool flags for padding fields flds = tuple(zip_longest(pads, (0,)+cuts, cuts))[:-1] # ignore final one slcs = ', '.join('line[{}:{}]'.format(i, j) for pad, i, j in flds if not pad) parse = eval('lambda line: ({})\n'.format(slcs)) # Create and compile source code. # Optional informational function attributes. parse.size = sum(abs(fw) for fw in fieldwidths) parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's') for fw in fieldwidths) return parse</code>
Kedua-dua kaedah menyediakan cara yang cekap untuk menghuraikan fail lebar tetap. Kaedah 1 menggunakan modul struct mudah digunakan manakala Kaedah 2 menggunakan penghirisan rentetan yang dioptimumkan menawarkan prestasi yang lebih baik sedikit apabila dioptimumkan.
Atas ialah kandungan terperinci Bagaimana Menghuraikan Fail Lebar Tetap dalam Python dengan Cekap: Modul Struktur lwn. Penghirisan Rentetan Dioptimumkan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
