


Bagaimana Anda Boleh Mengira Kesamaan Kosinus Antara Dua Ayat Tanpa Perpustakaan Luaran?
Mengira Kesamaan Kosinus Antara Dua Rentetan Ayat Tanpa Perpustakaan Luar
Dalam konteks pemprosesan bahasa semula jadi, mengira kesamaan kosinus adalah penting untuk mengukur persamaan teks antara dokumen. Walaupun perpustakaan luaran seperti tf-idf-cosine boleh memudahkan tugas ini, anda juga boleh mengira kesamaan kosinus secara manual tanpa bergantung pada kebergantungan tersebut.
Gambaran Keseluruhan Kesamaan Kosinus
Kosinus persamaan mengukur sudut antara dua vektor yang mewakili teks. Persamaan kosinus yang lebih tinggi menunjukkan sudut yang lebih kecil, membayangkan persamaan yang lebih besar antara teks. Ia dikira menggunakan hasil darab titik bagi vektor ternormal dibahagikan dengan magnitudnya.
Melaksanakan Keserupaan Kosinus Secara Manual
Untuk mengira kesamaan kosinus secara manual, kami mentakrifkan langkah berikut:
- Tokenisasi: Pisahkan ayat kepada perkataan individu.
- Vektorisasi: Buat pembilang untuk setiap perkataan dalam setiap ayat, yang mewakili kekerapannya (kekerapan jangka).
- Penormalan: Normalkan vektor dengan membahagikan setiap elemen dengan punca kuasa dua hasil tambah kuasa dua unsurnya (norma L2).
- Pengiraan Kosinus: Kira hasil darab titik bagi vektor ternormal dan bahagikannya dengan magnitudnya.
Pelaksanaan Kod
Di bawah ialah pelaksanaan Python pengiraan persamaan kosinus manual:
<code class="python">import math import re from collections import Counter WORD = re.compile(r"\w+") def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x] ** 2 for x in vec1]) sum2 = sum([vec2[x] ** 2 for x in vec2]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return numerator / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words) text1 = "This is a foo bar sentence ." text2 = "This sentence is similar to a foo bar sentence ." vector1 = text_to_vector(text1) vector2 = text_to_vector(text2) cosine = get_cosine(vector1, vector2) print("Cosine:", cosine)</code>
Hasil
Kod ini dilaksanakan seperti berikut:
Cosine: 0.861640436855
Nilai ini menunjukkan persamaan kosinus yang tinggi antara kedua-dua ayat, mengesahkan bahawa ia adalah serupa dari segi teks.
Pertimbangan Lanjut
Walaupun pendekatan manual ini menyediakan pelaksanaan asas, ia boleh dipertingkatkan dengan :
- Menggabungkan stemming atau lemmatization untuk normalisasi perkataan yang dipertingkatkan.
- Melaksanakan skim tokenisasi yang lebih canggih.
- Menambah pemberat seperti TF-IDF untuk pengiraan persamaan yang lebih tepat.
Atas ialah kandungan terperinci Bagaimana Anda Boleh Mengira Kesamaan Kosinus Antara Dua Ayat Tanpa Perpustakaan Luaran?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
