Rumah pembangunan bahagian belakang Tutorial Python Adakah pengoptimuman penggabungan rentetan Python digunakan pada rentetan besar?

Adakah pengoptimuman penggabungan rentetan Python digunakan pada rentetan besar?

Nov 03, 2024 am 07:51 AM

Does Python's string concatenation optimization apply to large strings?

Cara Menambah Satu Rentetan dengan Rentetan yang Lain dengan Cekap dalam Python

Dalam Python, menggabungkan rentetan dengan operator ' ' ialah tugas biasa. Walaupun kod berikut adalah mudah:

<code class="python">var1 = "foo"
var2 = "bar"
var3 = var1 + var2</code>
Salin selepas log masuk

Ia menimbulkan persoalan tentang kecekapan, terutamanya untuk rentetan besar atau gabungan berulang.

Pelanjutan Rentetan Dalam Tempat

Nasib baik, CPython telah melaksanakan pengoptimuman untuk meningkatkan kecekapan penyambungan rentetan. Apabila hanya satu rujukan kepada rentetan wujud dan rentetan lain dilampirkan padanya, CPython cuba memanjangkan rentetan asal di tempatnya. Pengoptimuman ini menjadikan operasi dilunaskan O(n).

Sebagai contoh, kod berikut pernah menjadi O(n^2):

<code class="python">s = ""
for i in range(n):
    s += str(i)</code>
Salin selepas log masuk

Walau bagaimanapun, dengan pengoptimuman, ia kini berjalan dalam O(n).

Butiran Pelaksanaan Python

Berikut ialah petikan daripada kod sumber Python C yang menggambarkan pengoptimuman:

<code class="c">int
_PyBytes_Resize(PyObject **pv, Py_ssize_t newsize)
{
    /* ... */
    *pv = (PyObject *)
        PyObject_REALLOC((char *)v, PyBytesObject_SIZE + newsize);
    if (*pv == NULL) {
        PyObject_Del(v);
        PyErr_NoMemory();
        return -1;
    }
    _Py_NewReference(*pv);
    sv = (PyBytesObject *) *pv;
    Py_SIZE(sv) = newsize;
    sv->ob_sval[newsize] = '<pre class="brush:php;toolbar:false"><code class="python">import timeit

s = ""
for i in range(10):
    s += 'a'

# Time the concatenation of 10 'a' characters
t1 = timeit.timeit(stmt="""s = ""
for i in range(10):
    s += 'a'""", globals=globals(), number=1000000)

# Time the concatenation of 100 'a' characters
t2 = timeit.timeit(stmt="""s = ""
for i in range(100):
    s += 'a'""", globals=globals(), number=100000)

# Time the concatenation of 1000 'a' characters
t3 = timeit.timeit(stmt="""s = ""
for i in range(1000):
    s += 'a'""", globals=globals(), number=10000)

print("10 'a':", t1)
print("100 'a':", t2)
print("1000 'a':", t3)</code>
Salin selepas log masuk
'; sv->ob_shash = -1; /* invalidate cached hash value */ return 0; }

Fungsi ini membenarkan saiz semula objek rentetan, tetapi hanya jika terdapat hanya satu rujukan kepadanya. Saiz rentetan ditukar sambil mengekalkan lokasi memori asal.

Awas

Adalah penting untuk ambil perhatian bahawa pengoptimuman ini bukan sebahagian daripada spesifikasi Python. Ia hanya dilaksanakan dalam penterjemah CPython. Pelaksanaan Python lain, seperti PyPy atau Jython, mungkin mempamerkan ciri prestasi yang berbeza.

Ujian Empirikal

Secara empirik, pengoptimuman terbukti dalam prestasi kod berikut:

Hasilnya menunjukkan peningkatan ketara dalam masa pelaksanaan apabila bilangan penggabungan bertambah, menunjukkan bahawa pengoptimuman tidak boleh digunakan untuk rentetan yang lebih besar.

Kesimpulan

Walaupun pengoptimuman sambungan rentetan di tempat Python secara mendadak meningkatkan kecekapan penggabungan rentetan dalam senario tertentu, adalah penting untuk memahami batasan pelaksanaan ini. Untuk rentetan besar atau apabila pertimbangan pengurusan ingatan adalah yang utama, kaedah alternatif manipulasi rentetan mungkin diperlukan untuk mencapai prestasi optimum.

Atas ialah kandungan terperinci Adakah pengoptimuman penggabungan rentetan Python digunakan pada rentetan besar?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles