Jadual Kandungan
Pemasangan Lengkung Eksponen dan Logaritma dalam Python Melebihi Pemasangan Polinomial
Pemasangan Lengkung Logaritma
Pemasangan Lengkung Eksponen
Nota tentang Bias dalam Pemasangan Tidak Berwajaran
Menggunakan Scipy untuk Pemasangan Lengkung
Rumah pembangunan bahagian belakang Tutorial Python Bagaimanakah anda melakukan pemasangan lengkung eksponen dan logaritma dalam Python melebihi pemasangan polinomial?

Bagaimanakah anda melakukan pemasangan lengkung eksponen dan logaritma dalam Python melebihi pemasangan polinomial?

Nov 04, 2024 am 02:47 AM

How do you perform exponential and logarithmic curve fitting in Python beyond polynomial fitting?

Pemasangan Lengkung Eksponen dan Logaritma dalam Python Melebihi Pemasangan Polinomial

Selain pemasangan polinomial, yang mempunyai fungsi polyfit() dalam Python, terdapat teknik untuk memasang eksponen dan lengkung logaritma.

Pemasangan Lengkung Logaritma

Untuk memuatkan lengkung pada model y = A B log x, kita boleh menukar data dengan mengambil logaritma kedua-dua belah, menghasilkan log y = log A B log x. Dengan memasang log y dengan log x menggunakan polyfit(), kami memperoleh pekali log A dan B.

<code class="python">import numpy as np

x = np.array([1, 7, 20, 50, 79])
y = np.array([10, 19, 30, 35, 51])
coeffs = np.polyfit(np.log(x), y, 1)

print("Coefficients:", coeffs)
print("y ≈", coeffs[1], "+", coeffs[0], "log(x)")</code>
Salin selepas log masuk

Pemasangan Lengkung Eksponen

Untuk memuatkan lengkung pada model y = Ae^ (Bx), kita boleh mengambil logaritma kedua-dua belah, menghasilkan log y = log A B x. Parameter kemudiannya boleh ditentukan dengan memasang log y terhadap x menggunakan polyfit().

<code class="python">x = np.array([10, 19, 30, 35, 51])
y = np.array([1, 7, 20, 50, 79])
coeffs = np.polyfit(x, np.log(y), 1)

print("Coefficients:", coeffs)
print("y ≈", np.exp(coeffs[1]), "*", "exp(", coeffs[0], "x)")</code>
Salin selepas log masuk

Nota tentang Bias dalam Pemasangan Tidak Berwajaran

Perlu diperhatikan bahawa pemasangan tidak berwajaran (tanpa mengambil kira berat titik data) boleh membawa kepada berat sebelah terhadap nilai kecil, terutamanya dalam pemasangan lengkung eksponen. Untuk mengurangkan perkara ini, pemberat boleh dimasukkan dalam proses pemasangan, berkadar dengan nilai-y.

Menggunakan Scipy untuk Pemasangan Lengkung

Scipy menyediakan fungsi curve_fit() untuk melaksanakan pemasangan lengkung tak linear. Ini membolehkan kami menyesuaikan mana-mana model secara langsung, tanpa transformasi.

<code class="python">from scipy.optimize import curve_fit

# Logarithmic curve fitting
popt, pcov = curve_fit(lambda t, a, b: a + b * np.log(t), x, y)
print("Coefficients:", popt)
print("y ≈", popt[1], "+", popt[0], "log(x)")

# Exponential curve fitting
popt, pcov = curve_fit(lambda t, a, b: a * np.exp(b * t), x, y, p0=(1, 0.1))
print("Coefficients:", popt)
print("y ≈", popt[0], "*", "exp(", popt[1], "x)")</code>
Salin selepas log masuk

Atas ialah kandungan terperinci Bagaimanakah anda melakukan pemasangan lengkung eksponen dan logaritma dalam Python melebihi pemasangan polinomial?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Tag artikel panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Mar 10, 2025 pm 06:54 PM

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?

Penapisan gambar di python Penapisan gambar di python Mar 03, 2025 am 09:44 AM

Penapisan gambar di python

Cara memuat turun fail di python Cara memuat turun fail di python Mar 01, 2025 am 10:03 AM

Cara memuat turun fail di python

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Mar 05, 2025 am 09:58 AM

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks

Cara Bekerja Dengan Dokumen PDF Menggunakan Python Cara Bekerja Dengan Dokumen PDF Menggunakan Python Mar 02, 2025 am 09:54 AM

Cara Bekerja Dengan Dokumen PDF Menggunakan Python

Cara Cache Menggunakan Redis dalam Aplikasi Django Cara Cache Menggunakan Redis dalam Aplikasi Django Mar 02, 2025 am 10:10 AM

Cara Cache Menggunakan Redis dalam Aplikasi Django

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Mar 10, 2025 pm 06:52 PM

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?

Memperkenalkan Toolkit Bahasa Alam (NLTK) Memperkenalkan Toolkit Bahasa Alam (NLTK) Mar 01, 2025 am 10:05 AM

Memperkenalkan Toolkit Bahasa Alam (NLTK)

See all articles