


Bagaimanakah saya boleh memproses fail CSV raksasa dalam Python 2.7 dengan cekap tanpa menghadapi masalah ingatan?
Membaca Fail CSV Raksasa: Mengoptimumkan Memori dan Kelajuan
Apabila cuba memproses fail CSV besar-besaran dengan berjuta-juta baris dan beratus-ratus lajur, tradisional pendekatan menggunakan iterator boleh membawa kepada isu berkaitan memori. Artikel ini meneroka teknik yang dioptimumkan untuk mengendalikan data CSV berskala besar dalam Python 2.7.
Pengoptimuman Memori:
Inti masalah memori terletak pada membina senarai dalam memori untuk menyimpan set data yang besar. Untuk mengurangkan isu ini, Python menawarkan kata kunci hasil, yang menukar fungsi kepada fungsi penjana. Fungsi ini menjeda pelaksanaan selepas setiap penyataan hasil, membenarkan pemprosesan tambahan data seperti yang dihadapi.
Dengan menggunakan fungsi penjana, anda boleh memproses data baris demi baris, menghapuskan keperluan untuk menyimpan keseluruhan fail dalam memori. Kod berikut menunjukkan pendekatan ini:
import csv def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row count = 0 for row in datareader: if row[3] == criterion: yield row count += 1 elif count: # stop processing when a consecutive series of non-matching rows is encountered return
Peningkatan Kelajuan:
Selain itu, anda boleh memanfaatkan fungsi dropwhile dan takewhile Python untuk meningkatkan lagi kelajuan pemprosesan. Fungsi ini boleh menapis data dengan cekap, membolehkan anda mencari dengan cepat baris yang diminati. Begini caranya:
from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row yield from takewhile( # yield matching rows lambda r: r[3] == criterion, dropwhile( # skip non-matching rows lambda r: r[3] != criterion, datareader)) return
Pemprosesan Bergelung Dipermudah:
Dengan menggabungkan fungsi penjana, anda boleh memudahkan proses penggulungan melalui set data anda. Berikut ialah kod yang dioptimumkan untuk getstuff dan getdata:
def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): yield row
Kini, anda boleh lelaran terus ke atas penjana getdata, yang menghasilkan aliran baris baris demi baris, membebaskan sumber memori yang berharga.
Ingat, matlamatnya adalah untuk meminimumkan storan data dalam memori sambil memaksimumkan kecekapan pemprosesan pada masa yang sama. Dengan menggunakan teknik pengoptimuman ini, anda boleh mengendalikan fail CSV raksasa dengan berkesan tanpa menghadapi sekatan jalan memori.
Atas ialah kandungan terperinci Bagaimanakah saya boleh memproses fail CSV raksasa dalam Python 2.7 dengan cekap tanpa menghadapi masalah ingatan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Fastapi ...

Menggunakan Python di Terminal Linux ...

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...
