Rumah > pembangunan bahagian belakang > Tutorial Python > Bagaimana untuk Membersihkan Rentetan Lajur DataFrame dengan Cekap dengan Fungsi Lambda Python?

Bagaimana untuk Membersihkan Rentetan Lajur DataFrame dengan Cekap dengan Fungsi Lambda Python?

Patricia Arquette
Lepaskan: 2024-11-08 19:23:01
asal
978 orang telah melayarinya

How to Efficiently Clean DataFrame Column Strings with Python's Lambda Function?

Membersihkan Rentetan Lajur DataFrame Dengan Cekap

Mengalih keluar bahagian yang tidak diingini daripada rentetan dalam lajur DataFrame ialah tugas biasa dalam pembersihan data. Ini mungkin memerlukan pengalihan keluar aksara, awalan atau akhiran tertentu.

Pertimbangkan DataFrame dengan struktur data berikut:

Time Result
09:00 52A
10:00 62B
11:00 44a
12:00 30b
13:00 -110a

Matlamat kami adalah untuk mengekstrak bahagian berangka daripada setiap 'Hasil ' rentetan, mengalih keluar tanda ' ' dan '-' dan aksara mengekor. Output yang diingini sepatutnya kelihatan seperti ini:

Time Result
09:00 52
10:00 62
11:00 44
12:00 30
13:00 110

Untuk mencapai ini, kita boleh menggunakan fungsi lambda Python. Kod berikut secara berkesan membersihkan data lajur 'Hasil':

data['Result'] = data['Result'].map(lambda x: x.lstrip('+-').rstrip('aAbBcC'))
Salin selepas log masuk

Fungsi lambda ini berulang melalui setiap elemen dalam lajur 'Hasil':

  • x.lstrip(' - '): Mengalih keluar sebarang tanda ' ' atau '-' di hadapan.
  • x.rstrip('aAbBcC'): Mengalih keluar sebarang mengekori aksara daripada senarai aksara yang ditentukan ('aAbBcC').

Dengan menggunakan operasi ini, kami mencapai hasil yang diingini, dengan bahagian yang tidak diingini dialih keluar daripada rentetan dalam lajur 'Hasil'.

Atas ialah kandungan terperinci Bagaimana untuk Membersihkan Rentetan Lajur DataFrame dengan Cekap dengan Fungsi Lambda Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan