Jadual Kandungan
Membina DataFrames daripada Kamus dengan Panjang Tatasusunan Tidak Sekata
Memanfaatkan Objek Siri
Mengekalkan Nilai Yang Hilang
Mengkonfigurasi Pengendalian Nilai Hilang
Contoh Output
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk Membina Pandas DataFrames daripada Kamus dengan Panjang Susunan Tidak Sekata?

Bagaimana untuk Membina Pandas DataFrames daripada Kamus dengan Panjang Susunan Tidak Sekata?

Nov 09, 2024 am 11:10 AM

How to Construct Pandas DataFrames from Dictionaries with Uneven Array Lengths?

Membina DataFrames daripada Kamus dengan Panjang Tatasusunan Tidak Sekata

Mengendalikan kamus dengan tatasusunan yang tidak sama panjang dalam Panda memerlukan pendekatan yang disesuaikan. Apabila cuba mencipta DataFrame dengan setiap lajur mewakili tatasusunan dalam kamus, seseorang mungkin menghadapi ValueError: "tatasusunan mestilah sama panjang."

Memanfaatkan Objek Siri

Untuk memintas perkara ini isu, kami memanfaatkan objek Siri Panda yang boleh memuatkan tatasusunan dengan panjang yang berbeza-beza. Dengan menukar setiap nilai kamus kepada Siri, kami boleh menyimpan tatasusunan dengan berkesan tanpa mengira panjangnya. Coretan kod berikut menunjukkan pendekatan ini:

import pandas as pd
import numpy as np

# Sample data generated via a reproducible seed
np.random.seed(2023)
data = {k: np.random.randn(v) for k, v in zip("ABCDEF", [10, 12, 15, 17, 20, 23])}

# Convert dictionary values to Series objects
series_dict = {k: pd.Series(v) for k, v in data.items()}

# Create DataFrame using these Series objects
df = pd.DataFrame(series_dict)
Salin selepas log masuk

Mengekalkan Nilai Yang Hilang

Apabila bekerja dengan tatasusunan dengan panjang yang berbeza-beza, adalah perkara biasa untuk menemui nilai yang tiada di mana tatasusunan yang lebih pendek tidak dapat mengisi sel yang tinggal. Secara lalai, Pandas mengisi jurang ini dengan nilai NaN (Bukan Nombor). Tingkah laku ini mengekalkan data asal sambil menyediakan struktur yang konsisten untuk analisis.

Mengkonfigurasi Pengendalian Nilai Hilang

Jika mahu, anda boleh menyesuaikan pengendalian nilai yang hilang dengan menggunakan parameter missing_values ​​dalam DataFrame( ) pembina. Sebagai contoh, untuk menggantikan nilai yang hilang dengan sifar dan bukannya NaN, anda akan menentukan missing_values=0 seperti yang ditunjukkan di bawah:

df = pd.DataFrame(series_dict, missing_values=0)
Salin selepas log masuk

Contoh Output

Output berikut menggambarkan DataFrame yang dibuat menggunakan pendekatan yang digariskan di atas:

print(df)
Salin selepas log masuk
      A         B         C         D         E         F
0  0.711674 -1.076522 -1.502178 -1.519748  0.340619  0.051132
1 -0.324485 -0.325682 -1.379593  2.097329 -1.253501 -0.238061
2 -1.001871 -1.035498 -0.204455  0.892562  0.370788 -0.208009
3  0.236251 -0.426320  0.642125  1.596488  0.455254  0.401304
4 -0.102160 -1.029361 -0.181176 -0.638762 -2.283720  0.183169
...       ...       ...       ...       ...       ...       ...
18       NaN       NaN       NaN       NaN       NaN       NaN
19       NaN       NaN       NaN       NaN       NaN       NaN
20       NaN       NaN       NaN       NaN       NaN       NaN
21       NaN       NaN       NaN       NaN       NaN       NaN
22       NaN       NaN       NaN       NaN       NaN       NaN
23 rows × 6 columns
Salin selepas log masuk

Seperti yang anda boleh perhatikan, semakin pendek tatasusunan menghasilkan nilai NaN dalam sel yang sepadan, memberikan perwakilan komprehensif data anda sambil mengekalkan format jadual yang dikehendaki.

Atas ialah kandungan terperinci Bagaimana untuk Membina Pandas DataFrames daripada Kamus dengan Panjang Susunan Tidak Sekata?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1672
14
Tutorial PHP
1277
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles