


Mengapakah Python Floating-Point Math Kadangkala Menghasilkan Keputusan yang Tidak Dijangka?
Mengapa Python Floating-Point Math Nampak Salah?
Apabila bekerja dengan nombor titik terapung dalam Python, anda mungkin menghadapi keadaan di mana keputusan berbeza secara tidak dijangka daripada nilai yang dijangkakan. Contohnya:
>>> 4.2 - 1.8 2.4000000000000004
Perbezaan di sini bukanlah 2.4 seperti yang dijangkakan tetapi 2.4000000000000004. Mengapakah Python mengira nilai ini secara tidak tepat?
Jawapan: Ketepatan Titik Terapung
Isu ini berpunca daripada sifat semula jadi perwakilan titik terapung. Nombor titik terapung digunakan untuk menganggarkan nombor nyata dalam ingatan komputer kerana ketidakupayaan komputer untuk mewakili semua nombor nyata dengan tepat. Anggaran ini memperkenalkan ralat pembundaran, yang boleh membawa kepada sedikit perbezaan dalam pengiraan.
Memahami Perwakilan IEEE-754
Nombor titik terapung biasanya diwakili menggunakan IEEE-754 standard, yang mentakrifkan format dan ketepatan nilai titik terapung. Piawaian ini membahagikan nombor titik terapung kepada tiga komponen:
- Tanda: Menunjukkan sama ada nombor itu positif atau negatif.
- Eksponen: Mewakili kuasa 2 yang mana pecahan itu didarabkan.
- Pecahan: Nilai perduaan yang mewakili bahagian pecahan nombor itu.
Penghadan Ketepatan Titik Terapung
Bilangan bit yang diperuntukkan untuk setiap komponen mengehadkan ketepatan perwakilan titik terapung. Python menggunakan nombor titik terapung berketepatan ganda 64-bit, yang membolehkan kira-kira 16 digit perpuluhan ketepatan. Walau bagaimanapun, nombor nyata tertentu, seperti 0.1 dan 0.3, tidak boleh diwakili dengan tepat menggunakan bilangan bit terhingga, mengakibatkan ralat pembundaran.Contoh Pengiraan Tidak Tepat
Contoh di atas menggambarkan bagaimana ralat pembundaran boleh menjejaskan pengiraan. Dalam kes 4.2 - 1.8, hasilnya dibundarkan sedikit kerana bahagian pecahan tepat penolakan tidak boleh diwakili dengan tepat dalam 64 bit. Begitu juga, keputusan 5.1 - 4 dibundarkan sedikit ke bawah, membawa kepada nilai terkira 1.0999999999999996 dan bukannya 1.1.Implikasi untuk Pengaturcara
While precision floating boleh memberikan cabaran dalam aplikasi tertentu, adalah penting untuk diingat bahawa nombor ini masih sangat tepat untuk kebanyakan pengiraan harian. Walau bagaimanapun, apabila berurusan dengan nilai yang sangat tepat atau aplikasi kewangan di mana ketepatan adalah penting, pendekatan alternatif seperti menggunakan perwakilan perpuluhan atau titik tetap mungkin diperlukan.Atas ialah kandungan terperinci Mengapakah Python Floating-Point Math Kadangkala Menghasilkan Keputusan yang Tidak Dijangka?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?

Cara Bekerja Dengan Dokumen PDF Menggunakan Python

Cara Cache Menggunakan Redis dalam Aplikasi Django

Memperkenalkan Toolkit Bahasa Alam (NLTK)

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?
