


Bagaimanakah Saya Boleh Menapis Siri Panda dengan Cekap untuk Berbilang Subrentetan?
Penapisan Panda yang Cekap untuk Berbilang Subrentetan dalam Siri
Menentukan sama ada siri mengandungi mana-mana daripada beberapa subrentetan ialah tugas biasa dalam analisis data. Semasa menggunakan logik atau untuk menggabungkan operasi str.contains individu menawarkan penyelesaian yang mudah, ia boleh menjadi tidak cekap untuk senarai subrentetan panjang dan bingkai data yang besar.
Untuk mengoptimumkan tugas ini, pertimbangkan untuk menggunakan pendekatan ekspresi biasa (regex). Dengan membungkus subrentetan dalam corak regex, kami boleh memanfaatkan fungsi padanan rentetan yang cekap panda. Khususnya, selepas melarikan diri daripada mana-mana aksara khas dalam subrentetan, kita boleh membina corak regex dengan menggabungkan subrentetan menggunakan aksara paip (|):
import re esc_lst = [re.escape(s) for s in lst] pattern = '|'.join(esc_lst)
Dengan corak ini, kita boleh menapis siri menggunakan str. mengandungi dan padanan tidak sensitif huruf besar dan kecil:
df[col].str.contains(pattern, case=False)
Pendekatan ini menawarkan prestasi yang lebih baik, terutamanya untuk bingkai data yang besar. Pertimbangkan contoh berikut:
from random import randint, seed seed(321) # 100 substrings of 5 characters lst = [''.join([chr(randint(0, 256)) for _ in range(5)]) for _ in range(100)] # 50000 strings of 20 characters strings = [''.join([chr(randint(0, 256)) for _ in range(20)]) for _ in range(50000)] col = pd.Series(strings) esc_lst = [re.escape(s) for s in lst] pattern = '|'.join(esc_lst)
Menggunakan pendekatan yang dioptimumkan ini, operasi penapisan mengambil masa lebih kurang 1 saat untuk 50,000 baris dan 100 subrentetan, jauh lebih pantas daripada kaedah yang diterangkan dalam soalan asal. Perbezaan prestasi menjadi lebih ketara untuk senarai bingkai data dan subrentetan yang lebih besar.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Menapis Siri Panda dengan Cekap untuk Berbilang Subrentetan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.
