


Bagaimanakah Saya Boleh Menyesuaikan Taburan Empirikal kepada Taburan Teori Menggunakan SciPy dalam Python?
Menyesuaikan Taburan Empirikal kepada Yang Teoretikal Menggunakan Scipy (Python)
Dalam perangkaan, selalunya perlu untuk memuatkan taburan empirikal, diperoleh daripada data yang diperhatikan, kepada taburan teori yang paling menggambarkan data. Ini membolehkan pengiraan kebarangkalian dan inferens statistik lain.
Pelaksanaan dalam Python (Scipy)
Scipy menyediakan pelbagai fungsi pengedaran yang boleh dipasang pada data . Untuk mencari taburan yang paling sesuai, kaedah kuasa dua terkecil selalunya digunakan untuk meminimumkan jumlah ralat kuasa dua (SSE) antara histogram data dan histogram taburan terpasang.
import numpy as np import scipy.stats as st # Data points data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # Candidate theoretical distributions distributions = ['norm', 'beta', 'gamma'] # Iterate over distributions and find best fit best_dist = None lowest_sse = float('inf') for dist_name in distributions: dist = getattr(st, dist_name) # Fit distribution to data params = dist.fit(data) # Evaluate SSE sse = np.sum((np.histogram(data, bins=10, density=True)[0] - dist.pdf(np.linspace(0, 10, 100), *params))**2) # Update best distribution if lower SSE found if sse < lowest_sse: lowest_sse = sse best_dist = dist # Calculate p-value for a given value value = 5 p_value = best_dist.cdf(value)
< h2>Contoh
Dalam contoh di atas, taburan empirikal data dipasang pada tiga berbeza taburan teori (normal, beta, dan gamma). Taburan gamma didapati mempunyai SSE terendah dan oleh itu paling sesuai. Nilai-p untuk nilai 5 kemudiannya dikira sebagai fungsi taburan kumulatif taburan gamma yang dinilai pada 5.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Menyesuaikan Taburan Empirikal kepada Taburan Teori Menggunakan SciPy dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
