Rumah pembangunan bahagian belakang Tutorial Python Membina Chatbot Mudah dengan LlamaChat dengan Excel]

Membina Chatbot Mudah dengan LlamaChat dengan Excel]

Nov 29, 2024 pm 08:31 PM

Dalam siaran ini, saya akan menerangkan cara saya membina chatbot menggunakan model Llama2 untuk menanyakan data Excel secara bijak.

Building a Simple Chatbot with LlamaChat with Excel]

Apa yang Kami Bina

  1. Memuatkan fail Excel.
  2. Membahagikan data kepada bahagian yang boleh diurus.
  3. Menyimpan data dalam pangkalan data vektor untuk mendapatkan semula pantas.
  4. Gunakan model Llama2 tempatan untuk menjawab soalan berdasarkan kandungan fail Excel.

Prasyarat:

Python (≥ 3.8)
Perpustakaan: langchain, panda, tidak berstruktur, Chroma

Langkah 1: Pasang Ketergantungan

%pip install -q unstructured langchain
%pip install -q "unstructured[all-docs]"
Salin selepas log masuk

Langkah 2: Muatkan Fail Excel

import pandas as pd

excel_path = "Book2.xlsx"
if excel_path:
    df = pd.read_excel(excel_path)
    data = df.to_string(index=False)
else:
    print("Upload an Excel file")

Salin selepas log masuk

Langkah 3: Potong Data dan Simpan dalam Pangkalan Data Vektor

Data teks yang besar dibahagikan kepada bahagian yang lebih kecil dan bertindih untuk pembenaman dan pertanyaan yang berkesan. Potongan ini disimpan dalam pangkalan data vektor Chroma.

from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.vectorstores import Chroma

text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
chunks = text_splitter.split_text(data)

embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False)
vector_db = Chroma.from_texts(
    texts=chunks, 
    embedding=embedding_model,
    collection_name="local-rag"
)

Salin selepas log masuk

Langkah 4: Mulakan Model Llama2

Kami menggunakan ChatOllama untuk memuatkan model Llama2 secara tempatan.

from langchain_community.chat_models import ChatOllama

local_model = "llama2"
llm = ChatOllama(model=local_model)

Salin selepas log masuk

Langkah 5: Buat Prompt Pertanyaan

Bot sembang akan bertindak balas berdasarkan nama lajur tertentu daripada fail Excel. Kami mencipta templat segera untuk membimbing model

from langchain.prompts import PromptTemplate

QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an AI assistant. Answer the user's questions based on the column names: 
    Id, order_id, name, sales, refund, and status. Original question: {question}"""
)
Salin selepas log masuk

Langkah 6: Sediakan Retriever

Kami mengkonfigurasi retriever untuk mengambil bahagian yang berkaitan daripada pangkalan data vektor, yang akan digunakan oleh model Llama2 untuk menjawab soalan.

from langchain.retrievers.multi_query import MultiQueryRetriever

retriever = MultiQueryRetriever.from_llm(
    vector_db.as_retriever(), 
    llm,
    prompt=QUERY_PROMPT
)

Salin selepas log masuk

Langkah 7: Bina Rantaian Tindak Balas

Rantai tindak balas menyepadukan:

  1. Retriever untuk mengambil konteks.
  2. Gesaan untuk memformat soalan dan konteks.
  3. Model Llama2 untuk menjana jawapan.
  4. Penghurai output untuk memformatkan respons.
from langchain.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser

template = """Answer the question based ONLY on the following context:
{context}
Question: {question}
"""

prompt = ChatPromptTemplate.from_template(template)

chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

Salin selepas log masuk

Langkah 8: Tanya Soalan

Sekarang kami bersedia untuk bertanya soalan! Begini cara kami menggunakan rantaian untuk mendapatkan respons:

raw_result = chain.invoke("How many rows are there?")
final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!"
print(final_result)

Salin selepas log masuk

Contoh Output

Apabila saya menjalankan kod di atas pada sampel fail Excel, inilah yang saya dapat:

Based on the provided context, there are 10 rows in the table.
If you have more questions, feel free to ask!

Salin selepas log masuk

Kesimpulan:

Pendekatan ini memanfaatkan kuasa benam dan model Llama2 untuk mencipta chatbot pintar dan interaktif untuk data Excel. Dengan beberapa tweak, anda boleh melanjutkan ini untuk berfungsi dengan jenis dokumen lain atau menyepadukannya ke dalam apl lengkap!

Semak contoh kerja dengan UI di LinkedIn saya:

Memperkenalkan BChat Excel: Alat Dikuasakan AI Perbualan untuk Interaksi Fail Excel

Atas ialah kandungan terperinci Membina Chatbot Mudah dengan LlamaChat dengan Excel]. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1671
14
Tutorial PHP
1276
29
Tutorial C#
1256
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

See all articles