


Membina Chatbot Mudah dengan LlamaChat dengan Excel]
Dalam siaran ini, saya akan menerangkan cara saya membina chatbot menggunakan model Llama2 untuk menanyakan data Excel secara bijak.
Apa yang Kami Bina
- Memuatkan fail Excel.
- Membahagikan data kepada bahagian yang boleh diurus.
- Menyimpan data dalam pangkalan data vektor untuk mendapatkan semula pantas.
- Gunakan model Llama2 tempatan untuk menjawab soalan berdasarkan kandungan fail Excel.
Prasyarat:
Python (≥ 3.8)
Perpustakaan: langchain, panda, tidak berstruktur, Chroma
Langkah 1: Pasang Ketergantungan
%pip install -q unstructured langchain %pip install -q "unstructured[all-docs]"
Langkah 2: Muatkan Fail Excel
import pandas as pd excel_path = "Book2.xlsx" if excel_path: df = pd.read_excel(excel_path) data = df.to_string(index=False) else: print("Upload an Excel file")
Langkah 3: Potong Data dan Simpan dalam Pangkalan Data Vektor
Data teks yang besar dibahagikan kepada bahagian yang lebih kecil dan bertindih untuk pembenaman dan pertanyaan yang berkesan. Potongan ini disimpan dalam pangkalan data vektor Chroma.
from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.embeddings import OllamaEmbeddings from langchain_community.vectorstores import Chroma text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100) chunks = text_splitter.split_text(data) embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False) vector_db = Chroma.from_texts( texts=chunks, embedding=embedding_model, collection_name="local-rag" )
Langkah 4: Mulakan Model Llama2
Kami menggunakan ChatOllama untuk memuatkan model Llama2 secara tempatan.
from langchain_community.chat_models import ChatOllama local_model = "llama2" llm = ChatOllama(model=local_model)
Langkah 5: Buat Prompt Pertanyaan
Bot sembang akan bertindak balas berdasarkan nama lajur tertentu daripada fail Excel. Kami mencipta templat segera untuk membimbing model
from langchain.prompts import PromptTemplate QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI assistant. Answer the user's questions based on the column names: Id, order_id, name, sales, refund, and status. Original question: {question}""" )
Langkah 6: Sediakan Retriever
Kami mengkonfigurasi retriever untuk mengambil bahagian yang berkaitan daripada pangkalan data vektor, yang akan digunakan oleh model Llama2 untuk menjawab soalan.
from langchain.retrievers.multi_query import MultiQueryRetriever retriever = MultiQueryRetriever.from_llm( vector_db.as_retriever(), llm, prompt=QUERY_PROMPT )
Langkah 7: Bina Rantaian Tindak Balas
Rantai tindak balas menyepadukan:
- Retriever untuk mengambil konteks.
- Gesaan untuk memformat soalan dan konteks.
- Model Llama2 untuk menjana jawapan.
- Penghurai output untuk memformatkan respons.
from langchain.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser template = """Answer the question based ONLY on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() )
Langkah 8: Tanya Soalan
Sekarang kami bersedia untuk bertanya soalan! Begini cara kami menggunakan rantaian untuk mendapatkan respons:
raw_result = chain.invoke("How many rows are there?") final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!" print(final_result)
Contoh Output
Apabila saya menjalankan kod di atas pada sampel fail Excel, inilah yang saya dapat:
Based on the provided context, there are 10 rows in the table. If you have more questions, feel free to ask!
Kesimpulan:
Pendekatan ini memanfaatkan kuasa benam dan model Llama2 untuk mencipta chatbot pintar dan interaktif untuk data Excel. Dengan beberapa tweak, anda boleh melanjutkan ini untuk berfungsi dengan jenis dokumen lain atau menyepadukannya ke dalam apl lengkap!
Semak contoh kerja dengan UI di LinkedIn saya:
Memperkenalkan BChat Excel: Alat Dikuasakan AI Perbualan untuk Interaksi Fail Excel
Atas ialah kandungan terperinci Membina Chatbot Mudah dengan LlamaChat dengan Excel]. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.
