


Bagaimanakah Saya Boleh Mengimport Data CSV Secara Pengaturcaraan ke dalam MySQL, Memetakan Lajur CSV ke Lajur Pangkalan Data?
Mengimport Data CSV ke dalam MySQL Secara Pengaturcaraan
Apabila mengimport fail CSV ke dalam pangkalan data MySQL, adalah perkara biasa untuk menghadapi perbezaan antara lajur CSV nama dan nama lajur jadual pangkalan data. Jika anda ingin mengimport data secara pengaturcaraan, anda boleh menentukan lajur CSV yang memetakan lajur pangkalan data yang mana.
MUAT DATA INFILE Sintaks
Sintaks LOAD DATA INFILE menyokong penetapan senarai lajur dalam jadual sasaran:
LOAD DATA INFILE 'file.csv' INTO TABLE table_name (column1, column2, ...);
Ini membolehkan anda memetakan lajur CSV ke lajur pangkalan data tertentu, tanpa mengira susunan atau penjajarannya.
Menggunakan Klien Grafik
Sebagai alternatif, anda boleh menggunakan klien grafik seperti HeidiSQL untuk memudahkan proses. HeidiSQL boleh menjana pertanyaan SQL yang mengendalikan pemetaan lajur berdasarkan pratonton grafik. Hanya susun lajur CSV dalam susunan yang dikehendaki dan salin pertanyaan yang dijana ke dalam program anda.
Contoh
Untuk mengimport fail CSV dengan lajur bernama "kunci", " value", dan "timestamp" ke dalam jadual pangkalan data bernama "my_data" dengan lajur bernama "id", "data", dan "created_at", anda akan menggunakan yang berikut pertanyaan:
LOAD DATA INFILE 'file.csv' INTO TABLE my_data (id, data, created_at) FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
Dengan menyatakan senarai lajur, anda memastikan data diimport dengan betul dan sejajar dengan skema jadual pangkalan data.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Mengimport Data CSV Secara Pengaturcaraan ke dalam MySQL, Memetakan Lajur CSV ke Lajur Pangkalan Data?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Pengimbasan jadual penuh mungkin lebih cepat dalam MySQL daripada menggunakan indeks. Kes -kes tertentu termasuk: 1) jumlah data adalah kecil; 2) apabila pertanyaan mengembalikan sejumlah besar data; 3) Apabila lajur indeks tidak selektif; 4) Apabila pertanyaan kompleks. Dengan menganalisis rancangan pertanyaan, mengoptimumkan indeks, mengelakkan lebih banyak indeks dan tetap mengekalkan jadual, anda boleh membuat pilihan terbaik dalam aplikasi praktikal.

Ya, MySQL boleh dipasang pada Windows 7, dan walaupun Microsoft telah berhenti menyokong Windows 7, MySQL masih serasi dengannya. Walau bagaimanapun, perkara berikut harus diperhatikan semasa proses pemasangan: Muat turun pemasang MySQL untuk Windows. Pilih versi MySQL yang sesuai (komuniti atau perusahaan). Pilih direktori pemasangan yang sesuai dan set aksara semasa proses pemasangan. Tetapkan kata laluan pengguna root dan simpan dengan betul. Sambung ke pangkalan data untuk ujian. Perhatikan isu keserasian dan keselamatan pada Windows 7, dan disyorkan untuk menaik taraf ke sistem operasi yang disokong.

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Perbezaan antara indeks clustered dan indeks bukan cluster adalah: 1. Klustered Index menyimpan baris data dalam struktur indeks, yang sesuai untuk pertanyaan oleh kunci dan julat utama. 2. Indeks Indeks yang tidak berkumpul indeks nilai utama dan penunjuk kepada baris data, dan sesuai untuk pertanyaan lajur utama bukan utama.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

MySQL dan Mariadb boleh wujud bersama, tetapi perlu dikonfigurasikan dengan berhati -hati. Kuncinya adalah untuk memperuntukkan nombor port dan direktori data yang berbeza untuk setiap pangkalan data, dan menyesuaikan parameter seperti peruntukan memori dan saiz cache. Konfigurasi sambungan, konfigurasi aplikasi, dan perbezaan versi juga perlu dipertimbangkan dan perlu diuji dengan teliti dan dirancang untuk mengelakkan perangkap. Menjalankan dua pangkalan data secara serentak boleh menyebabkan masalah prestasi dalam situasi di mana sumber terhad.

Dalam pangkalan data MySQL, hubungan antara pengguna dan pangkalan data ditakrifkan oleh kebenaran dan jadual. Pengguna mempunyai nama pengguna dan kata laluan untuk mengakses pangkalan data. Kebenaran diberikan melalui perintah geran, sementara jadual dibuat oleh perintah membuat jadual. Untuk mewujudkan hubungan antara pengguna dan pangkalan data, anda perlu membuat pangkalan data, membuat pengguna, dan kemudian memberikan kebenaran.

Penyederhanaan Integrasi Data: AmazonRDSMYSQL dan Integrasi Data Integrasi Zero ETL Redshift adalah di tengah-tengah organisasi yang didorong oleh data. Proses tradisional ETL (ekstrak, menukar, beban) adalah kompleks dan memakan masa, terutamanya apabila mengintegrasikan pangkalan data (seperti Amazonrdsmysql) dengan gudang data (seperti redshift). Walau bagaimanapun, AWS menyediakan penyelesaian integrasi ETL sifar yang telah mengubah keadaan ini sepenuhnya, menyediakan penyelesaian yang mudah, hampir-sebenar untuk penghijrahan data dari RDSMYSQL ke redshift. Artikel ini akan menyelam ke integrasi RDSMYSQL Zero ETL dengan redshift, menjelaskan bagaimana ia berfungsi dan kelebihan yang dibawa kepada jurutera dan pemaju data.
