Rumah pembangunan bahagian belakang Tutorial Python Mengapakah Mengisi Bingkai Data Pandas Baris-demi-Baris Tidak Cekap, dan Apakah Pendekatan yang Lebih Baik?

Mengapakah Mengisi Bingkai Data Pandas Baris-demi-Baris Tidak Cekap, dan Apakah Pendekatan yang Lebih Baik?

Nov 30, 2024 am 10:14 AM

Why is Populating a Pandas DataFrame Row-by-Row Inefficient, and What's a Better Approach?

Mencipta dan Mengisi DataFrame Panda Kosong

Secara konsep, seseorang mungkin mahu bermula dengan mencipta DataFrame kosong dan kemudian mengisinya secara berperingkat dengan nilai . Walau bagaimanapun, pendekatan ini tidak cekap dan terdedah kepada masalah prestasi.

Kesalahan Membangunkan DataFrame Dari segi Barisan

Menambahkan baris secara berulang pada DataFrame kosong adalah mahal dari segi pengiraan . Ia membawa kepada operasi kerumitan kuadratik disebabkan oleh peruntukan memori dinamik dan penugasan semula yang diperlukan. Ini boleh menjejaskan prestasi dengan teruk, terutamanya apabila berurusan dengan set data yang besar.

Pendekatan Alternatif: Mengumpul Data dalam Senarai

Daripada mengembangkan DataFrame mengikut baris, ia lebih baik disyorkan untuk mengumpul data dalam senarai. Ini mempunyai beberapa kelebihan:

  • Ia lebih cekap dan jauh lebih pantas.
  • Senarai mempunyai jejak memori yang lebih kecil berbanding DataFrames.
  • Jenis data disimpulkan secara automatik, menghapuskan keperluan untuk pelarasan manual.
  • Senarai menyokong operasi penambahan tanpa mengubah memori peruntukan.

Membuat DataFrame daripada Senarai

Apabila data telah terkumpul dalam senarai, DataFrame boleh dibuat dengan mudah dengan menukar senarai menggunakan pd .DataFrame(). Ini memastikan inferens jenis data yang betul dan mengautomasikan menetapkan RangeIndex untuk DataFrame.

Contoh

Pertimbangkan senario yang diterangkan dalam soalan. Kod berikut menunjukkan cara untuk mengumpul data dalam senarai dan kemudian mencipta DataFrame:

import pandas as pd

data = []
dates = [pd.to_datetime(f"2023-08-{day}") for day in range(10, 0, -1)]

valdict = {'A': [], 'B': [], 'C': []}  # Initialize symbol value lists

for date in dates:
    for symbol in valdict:
        if date == dates[0]:
            valdict[symbol].append(0)
        else:
            valdict[symbol].append(1 + valdict[symbol][-1])

# Create a DataFrame from the accumulated data
df = pd.DataFrame(valdict, index=dates)
Salin selepas log masuk

Pendekatan ini memastikan pengumpulan data yang cekap dan penciptaan DataFrame yang lancar tanpa sebarang overhed prestasi atau kebimbangan tentang lajur objek.

Atas ialah kandungan terperinci Mengapakah Mengisi Bingkai Data Pandas Baris-demi-Baris Tidak Cekap, dan Apakah Pendekatan yang Lebih Baik?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1658
14
Tutorial PHP
1257
29
Tutorial C#
1231
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles