Rumah pembangunan bahagian belakang Tutorial Python Pemilihan Plot Seaborn Dipermudahkan: Cara Memvisualisasikan Data Anda Dengan Berkesan

Pemilihan Plot Seaborn Dipermudahkan: Cara Memvisualisasikan Data Anda Dengan Berkesan

Nov 30, 2024 pm 01:40 PM

Penggambaran data ialah salah satu alat yang paling berkuasa untuk menganalisis dan mempersembahkan data. Seaborn, perpustakaan Python yang dibina di atas Matplotlib, menyediakan antara muka peringkat tinggi untuk mencipta visualisasi bermaklumat dan pelbagai. Artikel ini akan membimbing anda memilih plot Seaborn yang betul, menyesuaikannya untuk kejelasan dan mengelakkan perangkap biasa.

Mengapa Memilih Jenis Plot Yang Betul Penting?

Jenis plot yang anda pilih secara langsung memberi kesan kepada keberkesanan data anda mempersembahkan cerapan dan maklumatnya.

  • Satu plot serakan mendedahkan korelasi antara pembolehubah.

  • peta haba memudahkan perbandingan berskala besar.

Menggunakan jenis plot yang salah boleh menyebabkan salah tafsir, dan kadangkala cerapan daripada data tersebut terkubur dan tidak pernah didedahkan kerana kami memilih visualisasi yang salah.

Memahami Kategori Plot Seaborn

Plot Seaborn terbahagi kepada tiga kategori utama: Perkaitan, Pengagihan dan Kategori. Begini cara memilih dan menggunakan setiap satu.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
sumber:https://seaborn.pydata.org/_images/function_overview_8_0.png

1. Plot Hubungan

Plot hubungan menggambarkan hubungan antara dua pembolehubah, biasanya berangka. Seaborn menyediakan dua jenis plot hubungan utama: plot serakan dan plot garis. Anda boleh mencipta plot ini menggunakan fungsi therelplot().

sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

atau anda boleh menulis seperti ini:

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Hasilnya akan tetap sama.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
sumber: dokumentasi seaborn

Plot taburan memaparkan titik data individu, menjadikannya mudah untuk mengenal pasti corak atau korelasi. Sebaliknya, plot garisan sesuai untuk mempamerkan arah aliran dari semasa ke semasa atau merentas kategori.

2. Plot Pengedaran

Memahami taburan pembolehubah ialah langkah pertama yang kritikal dalam menganalisis atau memodelkan data. Plot pengedaran direka bentuk untuk mendedahkan sebaran atau serakan pembolehubah tunggal. Visualisasi ini boleh menjawab soalan penting dengan cepat, seperti: Apakah julat yang diliputi oleh data? Apakah kecenderungan pusatnya? Adakah data condong ke arah tertentu?

Seperti plot hubungan, plot pengedaran boleh dibuat menggunakan fungsi displot() dengan menentukan parameter jenis untuk memilih jenis plot yang dikehendaki. Sebagai alternatif, anda boleh terus menggunakan fungsi seperti histplot(), kdeplot(), ecdfplot(), atau rugplot() untuk visualisasi pengedaran tertentu.

Fungsi histplot() sangat baik untuk menggambarkan taburan kekerapan.

sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
sumber: dokumentasi seaborn

Kdeplot() lebih sesuai untuk memaparkan lengkung pengedaran yang lancar, manakala ecdfplot() menekankan perkadaran kumulatif. Rugplot() menambah penanda terperinci untuk titik data mentah, meningkatkan visualisasi lain dengan butiran yang lebih halus.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Seaborn juga menyokong memvisualisasikan taburan bivariat menggunakan alatan seperti peta haba(). Peta haba amat berkesan untuk menggambarkan matriks korelasi atau membuat perbandingan.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

3. Plot Kategori

Plot kategori direka bentuk untuk menggambarkan data yang disusun mengikut kategori. Pendekatan umum untuk mencipta plot ini menggunakan fungsi catplot(), menentukan parameter jenis untuk memilih jenis plot yang dikehendaki. Plot ini dikategorikan kepada tiga keluarga utama.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
Memilih jenis plot kategori yang betul bergantung pada soalan khusus yang ingin anda jawab. Plot ini menyediakan berbilang perspektif untuk menganalisis data kategori:

- Taburan kategori
Plot ini memaparkan titik data individu dalam kategori, membantu mengenal pasti corak atau pengedaran. Contohnya termasuk stripplot() danswarmplot().

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
sumber: dokumentasi seaborn

- Plot pengedaran kategori

Plot ini meringkaskan pengedaran data dalam kategori, menawarkan cerapan tentang kebolehubahan, penyebaran dan kecenderungan utama. Contohnya termasuk boxplot(), violinplot(), dan boxenplot().

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

- Plot anggaran kategori

Plot ini mengira anggaran agregat (cth., min) dan termasuk bar ralat untuk menunjukkan kebolehubahan atau selang keyakinan. Contohnya termasuk barplot(),pointplot(), dan countplot().

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Cara Memilih Plot Seaborn yang Betul

Sebelum merancang, tanya diri anda soalan ini:

Adakah data itu berkategori, berangka atau kedua-duanya?

Adakah anda meneroka perhubungan, pengedaran atau perbandingan?

Apakah saiz dan skala set data itu?

Mengetahui data anda membimbing anda ke alat visualisasi yang paling sesuai. Skema di bawah adalah daripada Kaggle dan menunjukkan cara memilih graf anda berdasarkan jenis data yang anda ada.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
sumber: kaggle

Mari bekerja dengan data dunia sebenar untuk menjadikannya praktikal. Pertimbangkan set data daripada Kaggle yang mengandungi 20 lajur, termasuk ciri seperti Waktu Belajar, Kehadiran, Penglibatan Ibu Bapa, Akses kepada Sumber, Aktiviti Ekstrakurikuler, Waktu Tidur, Skor Sebelumnya, Tahap Motivasi, Akses Internet, Sesi Bimbingan, Pendapatan Keluarga, Kualiti Guru, Sekolah Jenis, Pengaruh Rakan Sebaya, Aktiviti Fizikal, Masalah Pembelajaran, Tahap Pendidikan Ibu Bapa, Jarak dari Rumah, Jantina dan Peperiksaan Skor.

  1. Fahami Data Anda Mulakan dengan menganalisis jenis pembolehubah dalam set data anda untuk memahami data. Pembolehubah berangka paling sesuai untuk plot hubungan atau pengedaran, manakala pembolehubah kategori berfungsi dengan baik untuk pengelompokan atau perbandingan. Sebagai contoh, anda boleh menggunakan plot garis untuk menganalisis arah aliran dalam prestasi matematik berdasarkan kehadiran. Begitu juga, plot hist boleh digunakan untuk memeriksa taburan Waktu Tidur, membantu menentukan sama ada kebanyakan pelajar mendapat rehat yang mencukupi.
sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

  1. Tentukan Objektif Anda Tentukan objektif anda dengan bertanya apakah pandangan yang ingin anda sampaikan. Ingin membandingkan kumpulan? Pilih plot kategori seperti barplot atau boxplot. Berminat untuk meneroka perhubungan? Plot hubungan seperti plot serakan ialah pilihan yang bagus. Ingin memahami kebolehubahan? Pergi dengan plot pengedaran seperti plot hist. Sebagai contoh, plot serakan secara berkesan memaparkan hubungan antara dua pembolehubah berangka, dengan setiap titik mewakili pemerhatian. Ini memudahkan untuk mengesan korelasi, kelompok atau outlier. Memvisualisasikan bagaimana Jam Dikaji memberi impak Skor Peperiksaan boleh mendedahkan sama ada lebih banyak masa belajar berkorelasi dengan markah yang lebih tinggi.
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")
Salin selepas log masuk

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

  1. Padankan Plot dengan Data dan Matlamat Anda Memilih plot yang sesuai untuk data dan objektif analisis anda adalah penting. Visualisasi yang betul membolehkan anda mengekstrak cerapan bermakna dengan berkesan. Sebagai contoh, plot garisan lebih sesuai untuk memerhati arah aliran dari semasa ke semasa berbanding dengan histogram. Menggunakan plot yang salah boleh mengaburkan corak atau cerapan penting, menyebabkan set data kaya pun kurang berguna. Contohnya, barplot sesuai untuk membandingkan purata markah peperiksaan merentas tahap penglibatan ibu bapa yang berbeza. Plot ini menyerlahkan min (atau statistik ringkasan lain) pembolehubah berangka merentas kategori, menjadikannya sempurna untuk perbandingan peringkat tinggi.
sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Petua untuk Menyesuaikan Plot Seaborn

Tingkatkan kejelasan dalam visualisasi anda dengan menambahkan tajuk dan label menggunakan fungsi seperti plt.title(), plt.xlabel(), dan plt.ylabel(). Untuk menggabungkan dimensi kategori, manfaatkan atribut hue dalam Seaborn, yang membolehkan anda membezakan titik data berdasarkan lajur tertentu dalam set data anda. Sesuaikan skema warna dengan palet seperti coolwarm, husl, atau Set2 dengan menggunakan fungsi set_palette(). Selain itu, bezakan titik data dengan melaraskan gaya atau saiznya dengan sns.set_theme() dan mentakrifkan dimensi angka menggunakan plt.figure(figsize=(width, height)).

Perangkap Biasa yang Perlu Dielakkan

Untuk menyampaikan cerapan secara berkesan melalui visualisasi data, adalah penting untuk mengimbangi antara menyediakan maklumat yang mencukupi dan mengelakkan kesesakan plot. Melebihkan graf dengan titik data yang berlebihan boleh mengatasi penonton, manakala butiran yang tidak mencukupi boleh menyebabkan kekeliruan. Sentiasa sertakan label paksi yang jelas dan legenda, dan pastikan visualisasi menekankan cerapan utama yang ingin anda serlahkan.

Satu lagi isu biasa ialah mencipta visualisasi yang mengelirukan. Untuk mengelakkan ini, pastikan paksi diskalakan dengan tepat dengan tepat untuk mewakili data.

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Kesimpulan

Memilih plot Seaborn yang betul ialah langkah kritikal dalam meningkatkan pemahaman data dan menyampaikan cerapan dengan berkesan. Visualisasi yang sesuai boleh mendedahkan corak, perhubungan dan aliran yang mungkin kekal tersembunyi. Dengan menjajarkan jenis plot dengan struktur data dan matlamat analisis anda—sama ada meneroka pengedaran, perhubungan atau perbandingan—anda memastikan kejelasan dan ketepatan dalam penceritaan anda.

Visualisasi data adalah seni sama seperti sains. Jangan teragak-agak untuk mencuba plot Seaborn yang berbeza untuk mendedahkan perspektif baharu atau memperhalusi cerapan anda. Dengan amalan dan kreativiti, anda akan dapat memanfaatkan potensi penuh Seaborn untuk mengubah data mentah menjadi naratif visual yang menarik.

Atas ialah kandungan terperinci Pemilihan Plot Seaborn Dipermudahkan: Cara Memvisualisasikan Data Anda Dengan Berkesan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1672
14
Tutorial PHP
1276
29
Tutorial C#
1256
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles