


Bagaimana untuk Mengoptimumkan Sempadan HSV untuk Pengesanan Warna Tepat dalam OpenCV?
Memilih Sempadan HSV Optimum untuk Pengesanan Warna Menggunakan cv::inRange (OpenCV)
Dalam pemprosesan imej, ruang warna HSV sering digunakan untuk pengesanan warna. Memilih sempadan atas dan bawah HSV yang sesuai adalah penting untuk mengenal pasti warna sasaran dengan tepat. Soalan ini meneroka proses pemilihan untuk imej yang mengandungi penutup oren pada tin kopi.
Walaupun memberikan anggaran nilai pusat HSV sebanyak (22, 59, 100) untuk penutup, percubaan awal menggunakan sempadan (18 , 40, 90) dan (27, 255, 255) membuahkan hasil yang tidak memuaskan. Untuk menangani perkara ini, kita mesti mempertimbangkan isu yang berpotensi dalam skala HSV dan format imej.
Masalah 1: Varian Skala HSV
Aplikasi yang berbeza mungkin menggunakan skala HSV yang berbeza. GIMP menggunakan H = 0-360, S = 0-100, V = 0-100, manakala OpenCV menggunakan H: 0-179, S: 0-255, V: 0-255. Dalam kes ini, nilai rona GIMP (22) hendaklah dibelah dua untuk memadankan skala OpenCV, menghasilkan julat (5, 50, 50) - (15, 255, 255).
Masalah 2: Penukaran Format Imej
OpenCV beroperasi pada imej dalam format BGR, bukan RGB. Oleh itu, adalah perlu untuk mengubah suai garis penukaran warna kepada cv.CvtColor(frame, frameHSV, cv.CV_BGR2HSV). Ini memastikan bahawa imej ditukar dengan betul sebelum pengesanan sempadan HSV.
Dengan menggabungkan pelarasan ini, kami memperoleh hasil yang lebih menjanjikan:
[Imej pengesanan yang dipertingkatkan]
Walaupun output tidak sempurna, ia memberikan pengesanan yang lebih baik pada tudung oren. Pengesanan palsu boleh diminimumkan dengan memilih kontur terbesar yang sepadan dengan tudung.
Kesimpulan
Memilih sempadan HSV yang sesuai melibatkan pertimbangan varians skala dan penukaran format imej yang betul. Dengan menangani isu ini, kami boleh meningkatkan ketepatan pengesanan warna menggunakan cv::inRange dalam OpenCV.
Atas ialah kandungan terperinci Bagaimana untuk Mengoptimumkan Sempadan HSV untuk Pengesanan Warna Tepat dalam OpenCV?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pythonlistsarepartofthestandardlibrary, sementara

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
