


Membuka Kunci Teks daripada PDF Fon Terbenam: Tutorial OCR pytesseract
Mengekstrak teks daripada PDF biasanya mudah apabila ia dalam bahasa Inggeris dan tidak mempunyai fon terbenam. Walau bagaimanapun, sebaik sahaja andaian tersebut dialih keluar, ia menjadi mencabar untuk menggunakan perpustakaan python asas seperti pdfminer atau pdfplumber. Bulan lalu, saya ditugaskan untuk mengekstrak teks daripada PDF bahasa Gujarati dan mengimport medan data seperti nama, alamat, bandar, dll., ke dalam format JSON.
Jika fon dibenamkan dalam PDF itu sendiri, penyalinan tampal mudah tidak akan berfungsi dan menggunakan pdfplumber akan mengembalikan teks sampah yang tidak boleh dibaca. Oleh itu, saya terpaksa menukar setiap halaman PDF kepada imej dan kemudian menggunakan OCR menggunakan perpustakaan pytesseract untuk "mengimbas" halaman dan bukannya hanya membacanya. Tutorial ini akan menunjukkan kepada anda cara untuk melakukannya.
Perkara yang anda perlukan
- pdfplumber (Python library)
- pdf2image (Python library)
- pytesseract (perpustakaan Python)
- tesseract-ocr
Anda boleh memasang perpustakaan Python menggunakan arahan pip seperti yang ditunjukkan di bawah. Untuk Tesseract-OCR, muat turun dan pasang perisian dari tapak rasmi. pytesseract hanyalah pembalut di sekeliling perisian tesseract.
pip install pdfplumber pip install pdf2image pip install pytesseract
Menukar halaman PDF kepada imej
Langkah pertama ialah menukar halaman PDF anda kepada imej. Fungsi extract_text_from_pdf() ini betul-betul-anda melepasi laluan PDF dan page_num (sifar diindeks) sebagai parameter. Harap maklum bahawa saya menukar halaman kepada hitam putih terlebih dahulu untuk kejelasan, ini adalah pilihan.
# Extract text from a specific page of a PDF def extract_text_from_pdf(pdf_path, page_num): # Use pdfplumber to open the PDF pdf = pdfplumber.open(pdf_path) print(f"extracting page {page_num}..") page = pdf.pages[page_num] images = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1) image = images[0] # Convert to black and white bw_image = convert_to_bw(image) # Save the B&W image for debugging (optional) #bw_image.save("bw_page.png") # Perform OCR on the B&W image e_text = ocr_image(bw_image) open('out.txt', 'w', encoding='utf-8').write(e_text) #print("output written to file.") try: process_text(page_num, e_text) except Exception as e: print("Error occurred:", e) print("done..") # Convert image to black and white def convert_to_bw(image): # Convert to grayscale gray = image.convert('L') # Apply threshold to convert to pure black and white bw = gray.point(lambda x: 0 if x < 128 else 255, '1') return bw # Perform OCR using Tesseract on a given image def ocr_image(image_path): try: # Perform OCR custom_config = r'--oem 3 --psm 6 -l guj+eng' text = pytesseract.image_to_string(image_path, config=custom_config) # --psm 6 treats the image as a block of text return text except Exception as e: print(f"Error during OCR: {e}") return None
Fungsi ocr_image() menggunakan pytesseract untuk mengekstrak teks daripada imej melalui OCR. Parameter teknikal seperti --oem dan --psm mengawal cara imej diproses dan parameter -l guj eng menetapkan bahasa untuk dibaca. Memandangkan PDF ini mengandungi teks Inggeris sekali-sekala, saya menggunakan guj eng.
Memproses teks
Setelah anda mengimport teks menggunakan OCR, anda boleh menghuraikannya dalam format yang anda mahukan. Ini berfungsi sama seperti perpustakaan PDF lain seperti pdfplumber atau pypdf2.
nums = ['0', '૧', '૨', '૩', '૪', '૫', '૬', '૭', '૮', '૯'] def process_text(page_num, e_text): obj = None last_surname = None last_kramank = None print(f"processing page {page_num}..") for line in e_text.splitlines(): line = line.replace('|', '').replace('[', '').replace(']', '') parts = [word for word in line.split(' ') if word] if len(parts) == 0: continue new_rec = True for char in parts[0]: if char not in nums: new_rec = False break if len(parts) < 2: continue if new_rec and len(parts[0]) >= 2: # numbered line if len(parts) < 9: continue if obj: records.append(obj) obj = {} last_surname = parts[1] obj['kramank'] = parts[0] last_kramank = parts[0] obj['full_name'] = ' '.join(parts[1:4]) obj['surname'] = parts[1] obj['pdf_page_num'] = page_num + 1 obj['registered_by'] = parts[4] obj['village_vatan'] = parts[5] obj['village_mosal'] = parts[6] if parts[8] == 'વર્ષ': idx = 7 obj['dob'] = parts[idx] + ' વર્ષ' idx += 1 elif len(parts[7]) == 8 and parts[7][2] == '-': idx = 7 obj['dob'] = parts[idx] else: print("warning: no date") idx = 6 obj['marital_status'] = parts[idx+1] obj['extra_fields'] = '::'.join(parts[idx+2:-2]) obj['blood_group'] = parts[-1] elif parts[0] == last_surname: # new member in existing family if obj: records.append(obj) obj = {} obj['kramank'] = last_kramank obj['surname'] = last_surname obj['full_name'] = ' '.join(parts[0:3]) obj['pdf_page_num'] = page_num + 1 obj['registered_by'] = parts[3] obj['village_vatan'] = parts[4] obj['village_mosal'] = parts[5] if len(parts) <= 6: continue if parts[7] == 'વર્ષ': # date exists idx = 6 obj['dob'] = parts[idx] + ' વર્ષ' idx += 1 elif len(parts[6]) == 8 and parts[6][2] == '-': idx = 6 obj['dob'] = parts[idx] else: print("warning: no date") idx = 5 obj['marital_status'] = parts[idx+1] obj['extra_fields'] = '::'.join(parts[idx+2:-2]) obj['blood_group'] = parts[-1] elif obj: # continuation lines if ("(" in line and ")" in line) or "મો.ઃ" in line: obj['extra_fields'] += ' ' + '::'.join(parts[0:]) if obj: records.append(obj) jstr = json.dumps(records, indent=4) open("guj.json", 'w', encoding='utf-8').write(jstr) print(f"written page {page_num} to json..")
Setiap PDF mempunyai nuansa tersendiri yang mesti diambil kira. Dalam kes ini, nombor siri baharu (seperti 0૧ atau 0૨) dalam medan pertama menandakan kumpulan baharu apabila medan seterusnya (nama keluarga) bertukar.
pytesseract ialah bukti evolusi dan kemajuan dalam teknologi IT. Kira-kira sedekad yang lalu, membaca atau menghuraikan imej PDF menggunakan OCR dalam bahasa bukan bahasa Inggeris pada PC atau komputer riba yang dikonfigurasikan sederhana adalah hampir mustahil. Ini benar-benar kemajuan! Selamat mengekod, dan beritahu saya bagaimana ia berlaku dalam ulasan di bawah.
Rujukan
- Pemasangan Tesseract dalam tingkap
- Gunakan pytesseract OCR untuk mengecam teks daripada imej
- Bagaimana untuk mengkonfigurasi pytesseract untuk menyokong pengesanan teks untuk bahasa bukan Inggeris dalam windows 10?
Atas ialah kandungan terperinci Membuka Kunci Teks daripada PDF Fon Terbenam: Tutorial OCR pytesseract. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
