


Bagaimana untuk Muat Naik Fail Besar dengan Berkesan (≥3GB) ke Bahagian Belakang FastAPI?
Bagaimana hendak Muat Naik Fail Besar (≥3GB) ke FastAPI Backend?
FastAPI boleh memproses fail melebihi 1MB dengan mendapatkan semula bahagian fail pada satu masa daripada badan permintaan. Pendekatan ini menghapuskan keperluan untuk memuatkan keseluruhan fail ke dalam memori, yang disyorkan apabila berurusan dengan fail besar.
Permintaan Sebelah Pelanggan:
m = MultipartEncoder(fields = {"upload_file":open(file_name,'rb')}) prefix = "http://xxx:5000" url = "{}/v1/uploadfiles".format(prefix) try: req = requests.post( url, data=m, verify=False, )
Respons Sebelah Pelayan:
HTTP 422 {"detail":[{"loc":["body","upload_file"],"msg":"field required","type":"value_error.missing"}]}
Sebab untuk Ralat:
Ralat berlaku kerana permintaan pihak klien meninggalkan pengepala Jenis Kandungan. FastAPI menjangkakan pelanggan menghantar permintaan berbilang bahagian/data bentuk semasa memuat naik fail. Tanpa pengepala Jenis Kandungan, FastAPI tidak dapat menghuraikan kandungan permintaan dengan betul.
Penyelesaian 1 (Disyorkan): Menggunakan Muat Naik Fail Penstriman dan Permintaan Dikodkan Potongan
Pustaka HTTPX menyokong muat naik fail penstriman secara lalai, membolehkan anda menghantar fail tanpa memuatkannya sepenuhnya ingatan.
Contoh:
import httpx import time url = 'http://127.0.0.1:8000/upload' files = {'file': open('bigFile.zip', 'rb')} headers = {'Filename': 'bigFile.zip'} data = {'data': 'Hello World!'} with httpx.Client() as client: start = time.time() r = client.post(url, data=data, files=files, headers=headers) end = time.time() print(f'Time elapsed: {end - start}s') print(r.status_code, r.json(), sep=' ')
Penyelesaian 2: Menggunakan streaming_form_data Library
Pustaka ini menyediakan penstriman berbilang bahagian/borang -data parser untuk Python, membolehkan anda menghuraikan permintaan multipart/form-data tanpa memuatkan keseluruhan badan permintaan ke dalam ingatan.
Contoh:
from streaming_form_data import StreamingFormDataParser from streaming_form_data.targets import FileTarget, ValueTarget app = FastAPI() MAX_REQUEST_BODY_SIZE = 1024 * 1024 * 1024 * 4 # = 4GB MAX_FILE_SIZE = 1024 * 1024 * 1024 * 3 # = 3GB @app.post('/upload') async def upload(request: Request): parser = StreamingFormDataParser(headers=request.headers) filename = request.headers.get('Filename') file_ = FileTarget('./' + filename) data = ValueTarget() parser.register('file', file_) parser.register('data', data) body_validator = MaxBodySizeValidator(MAX_REQUEST_BODY_SIZE) file_validator = MaxSizeValidator(MAX_FILE_SIZE) async for chunk in request.stream(): body_validator(chunk) parser.data_received(chunk)
Atas ialah kandungan terperinci Bagaimana untuk Muat Naik Fail Besar dengan Berkesan (≥3GB) ke Bahagian Belakang FastAPI?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
