


Bagaimana Mengendalikan dan Abaikan Pengecualian dalam Python dengan Anggun?
Cara Mengendalikan Pengecualian dengan Anggun
Dalam Python, apabila blok kod gagal dilaksanakan disebabkan pengecualian, program biasanya keluar atau menimbulkan ralat. Walau bagaimanapun, mungkin terdapat kes di mana anda hanya mahu mengabaikan pengecualian tanpa menjejaskan aliran program. Memahami cara terbaik untuk mencapai ini akan memastikan kod anda kekal boleh diselenggara dan teguh.
Mengabaikan Pengecualian Khusus (Cara Yang Betul)
Untuk mengabaikan pengecualian tertentu semasa masih menangkap ralat, gunakan try-except blok dengan jenis pengecualian yang sesuai ditentukan. Sebagai contoh, jika anda ingin mengabaikan IOError, anda akan menulis:
try: # Code that may raise an IOError except IOError: pass
Mengabaikan Semua Pengecualian (Melalui)
Jika anda ingin mengabaikan semua pengecualian, termasuk gangguan papan kekunci dan sistem keluar, gunakan:
try: # Code that may raise an exception except Exception: pass
Nota: Pendekatan ini menangkap semua pengecualian yang diperoleh daripada Pengecualian, termasuk KeyboardInterrupt dan SystemExit.
Kaveat Mengabaikan Pengecualian
Walaupun mengabaikan pengecualian boleh berguna dalam senario tertentu, secara amnya tidak disyorkan untuk menyekat semua ralat tanpa pengendalian yang betul. Inilah sebabnya:
- Kesukaran Nyahpepijat: Pengecualian yang tidak dikendalikan menjadikannya lebih sukar untuk mengenal pasti dan membetulkan ralat, kerana ia tidak dilaporkan kepada pengguna atau dilog.
- Mengekalkan Kualiti Kod: Menangkap pengecualian dan menyediakan mesej ralat yang bermakna meningkatkan kebolehbacaan kod dan kebolehselenggaraan.
- Risiko Keselamatan: Mengabaikan pengecualian yang diketahui berpotensi mendedahkan kelemahan keselamatan dengan membenarkan ralat yang tidak dikendalikan tanpa disedari.
Atas ialah kandungan terperinci Bagaimana Mengendalikan dan Abaikan Pengecualian dalam Python dengan Anggun?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
