


Bagaimanakah Saya Boleh Melaksanakan Padanan Fuzzy yang Cekap untuk Nama Syarikat dalam PHP dan MySQL?
Nama Syarikat Padanan Fuzzy untuk Auto-Melengkapkan Input dengan PHP dan MySQL
Pengguna sering mengimport senarai nama syarikat yang banyak, yang boleh menyebabkan kelewatan dengan padanan rentetan langsung kerana saiz pangkalan data yang semakin meningkat. Mengoptimumkan proses ini dan menyediakan pengguna dengan cadangan masa nyata semasa mereka menaip memerlukan pendekatan yang lebih cekap.
Fuzzy Matching dengan Soundex
Satu penyelesaian yang berpotensi ialah mengindeks syarikat nama menggunakan fungsi SOUNDEX(). Fungsi ini menukar rentetan kepada perwakilan fonetik, dengan berkesan mengumpulkan nama yang serupa bunyi bersama-sama. Walaupun SOUNDEX agak pantas, ia mempunyai had:
- Ia menekankan beberapa aksara pertama, yang berpotensi membawa kepada padanan palsu untuk rentetan yang lebih panjang.
- Ia memerlukan huruf pertama nama untuk sama, mengehadkan ketepatannya untuk syarikat dengan aksara awal yang berbeza.
- Ia mungkin tidak berfungsi dengan betul dengan bukan Latin aksara.
Jarak Levenshtein untuk Padanan Lebih Lanjut
Untuk padanan kabur yang lebih tepat, pertimbangkan jarak Levenshtein, yang mengukur bilangan suntingan (sisipan, pemadaman , atau penggantian) yang diperlukan untuk mengubah satu rentetan kepada rentetan yang lain. Ini membolehkan fleksibiliti yang lebih besar tetapi lebih mahal dari segi pengiraan.
Menggabungkan Pendekatan untuk Keputusan Optimum
Bergantung pada keperluan khusus anda, anda mungkin mahu menggunakan SOUNDEX untuk auto- lengkapkan cadangan dan kembali ke jarak Levenshtein untuk perlawanan yang lebih halus. Pendekatan hibrid ini memberikan keseimbangan antara kelajuan dan ketepatan.
Contoh Penggunaan dalam PHP
// Calculate Soundex code for company names $stmt = $mysqli->prepare("SELECT company_id, SOUNDEX(name) FROM companies"); $stmt->execute(); $result = $stmt->get_result(); // Get user input and convert to Soundex $userInput = "Microsift"; $userInputSoundex = soundex($userInput); // Query for matching company IDs $stmt = $mysqli->prepare("SELECT company_id FROM companies WHERE SOUNDEX(name) = ?"); $stmt->bind_param("s", $userInputSoundex); $stmt->execute(); $result = $stmt->get_result(); // Further refine results using Levenshtein distance (optional) while ($row = $result->fetch_assoc()) { $companyId = $row['company_id']; $levenshteinDistance = levenshtein($userInput, $row['name']); if ($levenshteinDistance < 3) { // Consider as a match } }
Dengan memanfaatkan teknik ini, anda boleh melaksanakan sistem padanan kabur yang sangat berkesan yang meningkatkan pengalaman pengguna dan mengoptimumkan prestasi pangkalan data.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Melaksanakan Padanan Fuzzy yang Cekap untuk Nama Syarikat dalam PHP dan MySQL?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Peranan utama MySQL dalam aplikasi web adalah untuk menyimpan dan mengurus data. 1.MYSQL dengan cekap memproses maklumat pengguna, katalog produk, rekod urus niaga dan data lain. 2. Melalui pertanyaan SQL, pemaju boleh mengekstrak maklumat dari pangkalan data untuk menghasilkan kandungan dinamik. 3.MYSQL berfungsi berdasarkan model klien-pelayan untuk memastikan kelajuan pertanyaan yang boleh diterima.

InnoDB menggunakan redolog dan undologs untuk memastikan konsistensi dan kebolehpercayaan data. 1. Pengubahsuaian halaman data rekod untuk memastikan pemulihan kemalangan dan kegigihan transaksi. 2.UNDOLOGS merekodkan nilai data asal dan menyokong penggantian transaksi dan MVCC.

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

Berbanding dengan bahasa pengaturcaraan lain, MySQL digunakan terutamanya untuk menyimpan dan mengurus data, manakala bahasa lain seperti Python, Java, dan C digunakan untuk pemprosesan logik dan pembangunan aplikasi. MySQL terkenal dengan prestasi tinggi, skalabilitas dan sokongan silang platform, sesuai untuk keperluan pengurusan data, sementara bahasa lain mempunyai kelebihan dalam bidang masing-masing seperti analisis data, aplikasi perusahaan, dan pengaturcaraan sistem.

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Operasi asas MySQL termasuk membuat pangkalan data, jadual, dan menggunakan SQL untuk melakukan operasi CRUD pada data. 1. Buat pangkalan data: createdatabasemy_first_db; 2. Buat Jadual: CreateTableBooks (Idintauto_IncrementPrimaryKey, Titlevarchar (100) NotNull, Authorvarchar (100) NotNull, Published_yearint); 3. Masukkan Data: InsertIntoBooks (Tajuk, Pengarang, Published_year) VA

MySQL sesuai untuk aplikasi web dan sistem pengurusan kandungan dan popular untuk sumber terbuka, prestasi tinggi dan kemudahan penggunaan. 1) Berbanding dengan PostgreSQL, MySQL melakukan lebih baik dalam pertanyaan mudah dan operasi membaca serentak yang tinggi. 2) Berbanding dengan Oracle, MySQL lebih popular di kalangan perusahaan kecil dan sederhana kerana sumber terbuka dan kos rendah. 3) Berbanding dengan Microsoft SQL Server, MySQL lebih sesuai untuk aplikasi silang platform. 4) Tidak seperti MongoDB, MySQL lebih sesuai untuk data berstruktur dan pemprosesan transaksi.
