Rumah pembangunan bahagian belakang C++ Bagaimanakah OpenCV dan SVM Boleh Digunakan untuk Pengelasan Imej yang Cekap?

Bagaimanakah OpenCV dan SVM Boleh Digunakan untuk Pengelasan Imej yang Cekap?

Dec 06, 2024 pm 07:37 PM

How Can OpenCV and SVM be Used for Efficient Image Classification?

Menggunakan OpenCV dan SVM untuk Mengklasifikasikan Imej

Untuk menggunakan OpenCV dan SVM untuk pengelasan imej, satu siri langkah mesti diambil. Pertama, matriks latihan yang terdiri daripada ciri yang diekstrak daripada setiap imej mesti dibina. Matriks ini dibentuk dengan setiap baris mewakili imej, manakala setiap lajur sepadan dengan ciri imej tersebut. Memandangkan imej adalah dua dimensi, adalah perlu untuk menukarnya menjadi matriks satu dimensi. Panjang setiap baris akan sama dengan luas imej, yang mesti konsisten merentas semua imej.

Sebagai contoh, jika lima imej 4x3 piksel digunakan untuk latihan, matriks latihan dengan 5 baris (satu untuk setiap imej) dan 12 lajur (3x4 = 12) diperlukan. Semasa "mengisi" setiap baris dengan data daripada imej yang sepadan, pemetaan digunakan untuk menetapkan setiap elemen matriks imej 2D ke lokasi khususnya dalam baris matriks latihan yang sepadan.

Serentak, label mesti diwujudkan untuk setiap imej latihan. Ini dilakukan menggunakan matriks satu dimensi di mana setiap elemen sepadan dengan baris dalam matriks latihan dua dimensi. Nilai boleh ditetapkan untuk mewakili kelas yang berbeza (cth., -1 untuk bukan mata dan 1 untuk mata). Nilai ini boleh ditetapkan dalam gelung yang digunakan untuk menilai setiap imej, dengan mengambil kira struktur direktori data latihan.

Selepas mencipta matriks dan label latihan, adalah perlu untuk mengkonfigurasi parameter SVM. Objek CvSVMParams diisytiharkan dan nilai khusus ditetapkan, seperti svm_type dan kernel_type. Parameter ini boleh diubah berdasarkan keperluan projek, seperti yang dicadangkan dalam Pengenalan OpenCV untuk Menyokong Mesin Vektor.

Dengan parameter yang dikonfigurasikan, objek CvSVM dicipta dan dilatih pada data yang disediakan. Bergantung pada saiz set data, proses ini boleh memakan masa. Walau bagaimanapun, sebaik sahaja latihan selesai, SVM terlatih boleh disimpan untuk kegunaan masa hadapan, mengelakkan keperluan untuk latihan semula setiap kali.

Untuk menilai imej menggunakan SVM terlatih, imej dibaca, diubah menjadi satu dimensi matriks, dan diserahkan kepada svm.predict(). Fungsi ini mengembalikan nilai berdasarkan label yang diberikan semasa latihan. Sebagai alternatif, berbilang imej boleh dinilai secara serentak dengan mencipta matriks dalam format yang sama seperti matriks latihan yang ditakrifkan sebelum ini dan menghantarnya sebagai hujah. Dalam kes sedemikian, nilai pulangan yang berbeza akan dihasilkan oleh svm.predict().

Atas ialah kandungan terperinci Bagaimanakah OpenCV dan SVM Boleh Digunakan untuk Pengelasan Imej yang Cekap?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1669
14
Tutorial PHP
1273
29
Tutorial C#
1256
24
C# vs C: Sejarah, evolusi, dan prospek masa depan C# vs C: Sejarah, evolusi, dan prospek masa depan Apr 19, 2025 am 12:07 AM

Sejarah dan evolusi C# dan C adalah unik, dan prospek masa depan juga berbeza. 1.C dicipta oleh BjarnestroustRup pada tahun 1983 untuk memperkenalkan pengaturcaraan berorientasikan objek ke dalam bahasa C. Proses evolusinya termasuk pelbagai standardisasi, seperti C 11 memperkenalkan kata kunci auto dan ekspresi Lambda, C 20 memperkenalkan konsep dan coroutin, dan akan memberi tumpuan kepada pengaturcaraan prestasi dan sistem pada masa akan datang. 2.C# telah dikeluarkan oleh Microsoft pada tahun 2000. Menggabungkan kelebihan C dan Java, evolusinya memberi tumpuan kepada kesederhanaan dan produktiviti. Sebagai contoh, C#2.0 memperkenalkan generik dan C#5.0 memperkenalkan pengaturcaraan tak segerak, yang akan memberi tumpuan kepada produktiviti pemaju dan pengkomputeran awan pada masa akan datang.

C# vs C: Lembaran Lelajaran dan Pengalaman Pemaju C# vs C: Lembaran Lelajaran dan Pengalaman Pemaju Apr 18, 2025 am 12:13 AM

Terdapat perbezaan yang signifikan dalam lengkung pembelajaran C# dan C dan pengalaman pemaju. 1) Keluk pembelajaran C# agak rata dan sesuai untuk pembangunan pesat dan aplikasi peringkat perusahaan. 2) Keluk pembelajaran C adalah curam dan sesuai untuk senario kawalan berprestasi tinggi dan rendah.

C dan XML: Meneroka hubungan dan sokongan C dan XML: Meneroka hubungan dan sokongan Apr 21, 2025 am 12:02 AM

C Berinteraksi dengan XML melalui perpustakaan pihak ketiga (seperti TinyXML, PugixML, Xerces-C). 1) Gunakan perpustakaan untuk menghuraikan fail XML dan menukarnya ke dalam struktur data C-diproses. 2) Apabila menjana XML, tukar struktur data C ke format XML. 3) Dalam aplikasi praktikal, XML sering digunakan untuk fail konfigurasi dan pertukaran data untuk meningkatkan kecekapan pembangunan.

Apakah analisis statik dalam c? Apakah analisis statik dalam c? Apr 28, 2025 pm 09:09 PM

Penggunaan analisis statik di C terutamanya termasuk menemui masalah pengurusan memori, memeriksa kesilapan logik kod, dan meningkatkan keselamatan kod. 1) Analisis statik dapat mengenal pasti masalah seperti kebocoran memori, siaran berganda, dan penunjuk yang tidak dikenali. 2) Ia dapat mengesan pembolehubah yang tidak digunakan, kod mati dan percanggahan logik. 3) Alat analisis statik seperti perlindungan dapat mengesan limpahan penampan, limpahan integer dan panggilan API yang tidak selamat untuk meningkatkan keselamatan kod.

Bagaimana cara menggunakan Perpustakaan Chrono di C? Bagaimana cara menggunakan Perpustakaan Chrono di C? Apr 28, 2025 pm 10:18 PM

Menggunakan perpustakaan Chrono di C membolehkan anda mengawal selang masa dan masa dengan lebih tepat. Mari kita meneroka pesona perpustakaan ini. Perpustakaan Chrono C adalah sebahagian daripada Perpustakaan Standard, yang menyediakan cara moden untuk menangani selang waktu dan masa. Bagi pengaturcara yang telah menderita dari masa. H dan CTime, Chrono tidak diragukan lagi. Ia bukan sahaja meningkatkan kebolehbacaan dan mengekalkan kod, tetapi juga memberikan ketepatan dan fleksibiliti yang lebih tinggi. Mari kita mulakan dengan asas -asas. Perpustakaan Chrono terutamanya termasuk komponen utama berikut: STD :: Chrono :: System_Clock: Mewakili jam sistem, yang digunakan untuk mendapatkan masa semasa. Std :: Chron

Di luar gembar -gembur: Menilai kaitan C hari ini Di luar gembar -gembur: Menilai kaitan C hari ini Apr 14, 2025 am 12:01 AM

C masih mempunyai kaitan penting dalam pengaturcaraan moden. 1) Keupayaan operasi prestasi tinggi dan perkakasan langsung menjadikannya pilihan pertama dalam bidang pembangunan permainan, sistem tertanam dan pengkomputeran berprestasi tinggi. 2) Paradigma pengaturcaraan yang kaya dan ciri -ciri moden seperti penunjuk pintar dan pengaturcaraan templat meningkatkan fleksibiliti dan kecekapannya. Walaupun lengkung pembelajaran curam, keupayaannya yang kuat menjadikannya masih penting dalam ekosistem pengaturcaraan hari ini.

Masa Depan C: Adaptasi dan Inovasi Masa Depan C: Adaptasi dan Inovasi Apr 27, 2025 am 12:25 AM

Masa depan C akan memberi tumpuan kepada pengkomputeran selari, keselamatan, modularization dan pembelajaran AI/mesin: 1) Pengkomputeran selari akan dipertingkatkan melalui ciri -ciri seperti coroutine; 2) keselamatan akan diperbaiki melalui pemeriksaan jenis dan mekanisme pengurusan memori yang lebih ketat; 3) modulasi akan memudahkan organisasi dan penyusunan kod; 4) AI dan pembelajaran mesin akan mendorong C untuk menyesuaikan diri dengan keperluan baru, seperti pengkomputeran berangka dan sokongan pengaturcaraan GPU.

C: Adakah ia mati atau hanya berkembang? C: Adakah ia mati atau hanya berkembang? Apr 24, 2025 am 12:13 AM

C isnotdying; it'sevolving.1) c suplemenvantduetoitsverversatilityandeficiencyinperformance-criticalapplications.2) thelanguageiscontinuouslyupdated, withc 20introducingfeatureslikemodulesandcoroutinestoMproveusability.3)

See all articles