Memilih Antara peta, applymap dan gunakan dalam Pandas
Apabila bekerja dengan Pandas DataFrames, selalunya perlu menggunakan fungsi pada data dalam pelbagai cara. Tiga kaedah yang biasa digunakan untuk pengvektoran ialah peta, peta aplikasi dan gunakan. Setiap satu mempunyai tujuan dan aplikasi tersendiri.
Peta
peta ialah kaedah khusus untuk objek Siri dan menggunakan fungsi pada setiap elemen dalam Siri. Ia mengharapkan fungsi yang mengambil satu nilai sebagai input dan mengembalikan satu nilai.
Contoh:
import pandas as pd # Create a Series series = pd.Series([1, 2, 3, 4, 5]) # Apply a function to each element def square(x): return x**2 # Apply the function to the series using map squared_series = series.map(square) print(squared_series)
Output:
0 1 1 4 2 9 3 16 4 25 dtype: int64
Applymap
applymap menggunakan fungsi pada setiap elemen sesuatu DataFrame, melaksanakan operasi dari segi elemen. Seperti peta, ia menjangkakan fungsi yang mengambil satu nilai sebagai input dan mengembalikan satu nilai.
Contoh:
# Create a DataFrame df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) # Apply a function to each element of the DataFrame def format_number(x): return "{:.2f}".format(x) # Apply the function to the DataFrame using applymap formatted_df = df.applymap(format_number) print(formatted_df)
Output:
a b 0 1.00 4.00 1 2.00 5.00 2 3.00 6.00
Apply
apply menggunakan fungsi pada setiap baris atau lajur DataFrame, bergantung pada parameter paksi. Ia lebih serba boleh berbanding peta dan peta pakai serta boleh mengendalikan fungsi yang memerlukan menghantar berbilang nilai sebagai input.
Contoh:
# Apply a function to each row of the DataFrame def get_max_min_diff(row): return row.max() - row.min() max_min_diff = df.apply(get_max_min_diff, axis=1) print(max_min_diff)
Output:
0 3.00 1 3.00 2 3.00 dtype: float64
Penggunaan Ringkasan
Atas ialah kandungan terperinci Bila hendak menggunakan Panda `map`, `applymap` atau `apply`?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!