ChromaDB untuk Minda SQL
Helo, Chroma DB ialah pangkalan data vektor yang berguna untuk bekerja dengan aplikasi GenAI. Dalam artikel ini saya akan meneroka bagaimana kita boleh menjalankan pertanyaan pada Chroma DB dengan melihat hubungan serupa dalam MySQL.
Skema
Tidak seperti SQL, anda tidak boleh menentukan skema anda sendiri. Dalam Chroma Anda mendapat Lajur tetap setiap satu dengan tujuan tersendiri:
import chromadb #setiing up the client client = chromadb.Client() collection = client.create_collection(name="name") collection.add( documents = ["str1","str2","str3",...] ids = [1,2,3,....] metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..] embeddings = [[1,2,3], [3,4,5], [5,6,7]] )
Id: Ia adalah id unik. Ambil perhatian bahawa anda perlu membekalkannya sendiri tidak seperti sql tiada kenaikan automatik
Dokumen: Ia digunakan untuk memasukkan data teks yang digunakan untuk menjana benam. Anda boleh membekalkan teks dan ia akan membuat benam secara automatik. atau anda hanya boleh membekalkan benam secara terus dan menyimpan teks di tempat lain.
Pembenaman: Pada pendapat saya, ia adalah bahagian paling penting dalam pangkalan data kerana ia digunakan untuk melakukan carian persamaan.
Metadata: ini digunakan untuk mengaitkan sebarang data tambahan yang mungkin anda ingin tambahkan pada pangkalan data anda untuk sebarang konteks tambahan.
Sekarang asas koleksi adalah jelas, mari beralih kepada operasi CRUD dan kita akan melihat bagaimana kita boleh menanyakan pangkalan data.
Operasi CRUD
Nota: Koleksi adalah seperti Jadual dalam Chroma
Untuk mencipta koleksi, kami boleh menggunakan create_collection() dan melaksanakan operasi kami seperti yang diperlukan tetapi jika koleksi sudah dibuat dan kami perlu merujuknya semula, kami perlu menggunakan get_collection() atau kami akan mendapat ralat.
Create Table tablename
#Create a collection collection = client.create_collection(name="name") #If a collection is already made and you need to use it again the use collection = client.get_collection(name="name")
Insert into tablename Values(... , ..., ...)
collection.add( ids = [1] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] )
Untuk Mengemas kini data yang dimasukkan atau Memadam data, kita boleh menggunakan arahan berikut
collection.update( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # If the id does not exist update will do nothing. to add data if id does not exist use collection.upsert( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # To delete data use delete and refrence the document or id or the feild collection.delete( documents = ["some text"] ) # Or you can delete from a bunch of ids using where that will apply filter on metadata collection.delete( ids=["id1", "id2", "id3",...], where={"chapter": "20"} )
Pertanyaan
Sekarang kita akan melihat bagaimana pertanyaan tertentu kelihatan
Select * from tablename Select * from tablename limit value Select Documents, Metadata from tablename
collection.get() collection.get(limit = val) collection.get(include = ["documents","metadata"])
Semasa get() ada untuk mengambil set besar jadual untuk pertanyaan yang lebih lanjut, anda perlu menggunakan kaedah pertanyaan
Select A,B from table limit val
collection.query( n_results = val #limit includes = [A,B] )
Kini kami mendapat 3 cara yang mungkin untuk menapis data: Carian Kesamaan (untuk pangkalan data vektor yang digunakan terutamanya), penapis Metadata dan penapis Dokumen
Carian Persamaan
Kami boleh mencari berdasarkan teks atau benam dan mendapatkan output yang paling serupa
collection.query(query_texts=["string"]) collection.query(query_embeddings=[[1,2,3]])
Dalam ChromaDB, parameter di mana dan di mana_dokumen digunakan untuk menapis hasil semasa pertanyaan. Penapis ini membolehkan anda memperhalusi carian persamaan anda berdasarkan metadata atau kandungan dokumen tertentu.
Tapis mengikut Metadata
Parameter tempat membolehkan anda menapis dokumen berdasarkan metadata berkaitannya. Metadata biasanya ialah kamus pasangan nilai kunci yang anda sediakan semasa sisipan dokumen.
Tapis dokumen mengikut metadata seperti kategori, pengarang atau tarikh.
import chromadb #setiing up the client client = chromadb.Client() collection = client.create_collection(name="name") collection.add( documents = ["str1","str2","str3",...] ids = [1,2,3,....] metadatas=[{"chapter": "3", "verse": "16"},{"chapter":"3", "verse":"5"}, ..] embeddings = [[1,2,3], [3,4,5], [5,6,7]] )
Create Table tablename
Tapis mengikut Kandungan Dokumen
Parameter where_document membenarkan penapisan terus berdasarkan kandungan dokumen.
Dapatkan hanya dokumen yang mengandungi kata kunci tertentu.
#Create a collection collection = client.create_collection(name="name") #If a collection is already made and you need to use it again the use collection = client.get_collection(name="name")
Nota Penting:
- Gunakan operator seperti $contains, $startsWith atau $endsWith.
- $contains: Padankan dokumen yang mengandungi subrentetan.
- $startsWith: Padankan dokumen bermula dengan subrentetan.
- $endsWith: Padankan dokumen yang berakhir dengan subrentetan.
-
Contohnya:
Insert into tablename Values(... , ..., ...)
Salin selepas log masukSalin selepas log masuk
Kes Penggunaan Biasa:
Kami boleh menggabungkan ketiga-tiga penapis seperti ini:
-
Cari Dalam Kategori Tertentu:
collection.add( ids = [1] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] )
Salin selepas log masukSalin selepas log masuk -
Cari Dokumen yang Mengandungi Istilah Tertentu:
collection.update( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # If the id does not exist update will do nothing. to add data if id does not exist use collection.upsert( ids = [2] documents = ["some text"] metadatas = [{"key":"value"}] embeddings = [[1,2,3]] ) # To delete data use delete and refrence the document or id or the feild collection.delete( documents = ["some text"] ) # Or you can delete from a bunch of ids using where that will apply filter on metadata collection.delete( ids=["id1", "id2", "id3",...], where={"chapter": "20"} )
Salin selepas log masukSalin selepas log masuk -
Gabungkan Metadata dan Penapis Kandungan Dokumen:
Select * from tablename Select * from tablename limit value Select Documents, Metadata from tablename
Salin selepas log masukSalin selepas log masuk
Penapis ini meningkatkan ketepatan carian persamaan anda, menjadikan ChromaDB alat yang berkuasa untuk mendapatkan semula dokumen yang disasarkan.
Kesimpulan
Saya menulis artikel ini kerana saya merasakan bahawa dokumen itu meninggalkan banyak keinginan apabila cuba membuat program saya sendiri, saya harap ini membantu!
Terima kasih kerana membaca jika anda menyukai artikel sila like dan share. Juga jika anda baru dalam seni bina perisian dan ingin mengetahui lebih lanjut, saya memulakan kohort berasaskan kumpulan di mana saya secara peribadi akan bekerjasama dengan anda dan sekumpulan kecil untuk mengajar anda segala-galanya tentang Seni Bina Perisian dan Pengetua Reka Bentuk. Boleh isi borang di bawah jika berminat . https://forms.gle/SUAxrzRyvbnV8uCGA
Atas ialah kandungan terperinci ChromaDB untuk Minda SQL. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
