


Bagaimanakah Saya Boleh Menggunakan Berbilang Fungsi dengan Cekap pada Berbilang Lajur Kumpulan Mengikut Lajur dalam Panda?
Gunakan Berbilang Fungsi pada Berbilang KumpulanBy Lajur
Pengenalan
Apabila bekerja dengan data terkumpul, selalunya perlu menggunakan berbilang fungsi pada berbilang lajur. Pustaka Pandas menyediakan beberapa kaedah untuk mencapai ini, termasuk kaedah agg dan gunakan. Walau bagaimanapun, kaedah ini mempunyai had tertentu dan mungkin tidak selalu memenuhi kes penggunaan tertentu.
Menggunakan agg dengan Dict
Seperti yang dinyatakan dalam soalan, adalah mungkin untuk menggunakan berbilang fungsi pada siri kumpulan mengikut objek menggunakan kamus:
grouped['D'].agg({'result1' : np.sum, 'result2' : np.mean})
Pendekatan ini membenarkan penentuan nama lajur sebagai kunci dan fungsi yang sepadan sebagai nilai. Walau bagaimanapun, ini hanya berfungsi untuk Siri kumpulan mengikut objek. Apabila digunakan pada kumpulan mengikut DataFrame, kunci kamus dijangkakan sebagai nama lajur, bukan nama lajur output.
Menggunakan agg dengan Fungsi Lambda
Soalan juga meneroka menggunakan fungsi lambda dalam agg untuk dilaksanakan operasi berdasarkan lajur lain dalam kumpulan mengikut objek. Pendekatan ini sesuai apabila fungsi anda melibatkan kebergantungan pada lajur lain. Walaupun tidak disokong secara eksplisit oleh kaedah agg, adalah mungkin untuk mengatasi had ini dengan menentukan nama lajur secara manual sebagai rentetan:
grouped.agg({'C_sum' : lambda x: x['C'].sum(), 'C_std': lambda x: x['C'].std(), 'D_sum' : lambda x: x['D'].sum()}, 'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)
Pendekatan ini membenarkan penggunaan berbilang fungsi pada lajur yang berbeza, termasuk yang bergantung pada yang lain . Walau bagaimanapun, ia boleh bertele-tele dan memerlukan pengendalian nama lajur yang berhati-hati.
Menggunakan aplikasi dengan Fungsi Tersuai
Pendekatan yang lebih fleksibel ialah menggunakan kaedah guna, yang menghantar keseluruhan DataFrame kumpulan kepada fungsi yang disediakan. Ini membolehkan melakukan operasi dan interaksi yang lebih kompleks antara lajur dalam kumpulan:
def f(x): d = {} d['a_sum'] = x['a'].sum() d['a_max'] = x['a'].max() d['b_mean'] = x['b'].mean() d['c_d_prodsum'] = (x['c'] * x['d']).sum() return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum']) df.groupby('group').apply(f)
Dengan mengembalikan Siri dengan lajur berlabel yang sesuai, anda boleh melakukan berbilang pengiraan dengan mudah pada kumpulan mengikut DataFrame. Pendekatan ini lebih serba boleh dan membenarkan operasi kompleks berdasarkan berbilang lajur.
Kesimpulan
Menggunakan berbilang fungsi pada berbilang lajur berkumpulan memerlukan pertimbangan yang teliti terhadap struktur data dan operasi yang diingini. Kaedah agg sesuai untuk operasi mudah pada objek Siri, manakala kaedah guna menawarkan fleksibiliti yang lebih besar apabila bekerja dengan kumpulan mengikut DataFrames atau melakukan pengiraan yang rumit.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Menggunakan Berbilang Fungsi dengan Cekap pada Berbilang Lajur Kumpulan Mengikut Lajur dalam Panda?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
