


Bagaimana untuk Mencipta Anotasi Berlegar untuk Plot Taburan dalam Matplotlib?
Cara Menambah Anotasi Berlegar pada Plot
Menganotasi titik pada plot berselerak ialah tugas biasa apabila bekerja dengan data. Matplotlib, perpustakaan Python untuk mencipta plot 2D, menyediakan kaedah mudah untuk menambah anotasi tetap pada plot menggunakan arahan anotasi. Walau bagaimanapun, pendekatan ini boleh menjadi tidak praktikal apabila berurusan dengan banyak titik data kerana plot mungkin menjadi berantakan.
Nasib baik, terdapat penyelesaian yang melibatkan penciptaan anotasi dinamik yang hanya muncul apabila kursor menuding pada titik data tertentu. Kaedah ini memerlukan sedikit pengubahsuaian fungsi anotasi bersama-sama dengan fungsi panggil balik untuk mengendalikan acara kursor.
Berikut ialah contoh kod yang menunjukkan pelaksanaan:
import matplotlib.pyplot as plt import numpy as np; np.random.seed(1) x = np.random.rand(15) y = np.random.rand(15) names = np.array(list("ABCDEFGHIJKLMNO")) c = np.random.randint(1, 5, size=15) norm = plt.Normalize(1, 4) cmap = plt.cm.RdYlGn fig, ax = plt.subplots() sc = plt.scatter(x, y, c=c, s=100, cmap=cmap, norm=norm) annot = ax.annotate("", xy=(0, 0), xytext=(20, 20), textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) def update_annot(ind): pos = sc.get_offsets()[ind["ind"][0]] annot.xy = pos text = "{}, {}".format(" ".join(list(map(str, ind["ind"]))), " ".join([names[n] for n in ind["ind"]])) annot.set_text(text) annot.get_bbox_patch().set_facecolor(cmap(norm(c[ind["ind"][0]]))) annot.get_bbox_patch().set_alpha(0.4) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = sc.contains(event) if cont: update_annot(ind) annot.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect("motion_notify_event", hover) plt.show()
Kod ini menambah alatPetua yang muncul apabila tetikus melayang di atas titik data, memaparkan koordinat dan namanya. Fungsi update_annot mengemas kini kedudukan dan kandungan anotasi secara dinamik bergantung pada titik yang dilegar.
Pendekatan ini membolehkan visualisasi bebas kekacauan dengan maklumat yang mudah diakses tentang setiap titik data, menjadikannya sesuai untuk penerokaan data interaktif.
Atas ialah kandungan terperinci Bagaimana untuk Mencipta Anotasi Berlegar untuk Plot Taburan dalam Matplotlib?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Pythonlistsarepartofthestandardlibrary, sementara

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.
