Menyimpan dan Memulihkan Model Terlatih dalam Tensorflow
Selepas melatih model dalam Tensorflow, memelihara dan menggunakannya semula adalah penting. Begini cara mengendalikan storan model dengan berkesan:
Menyimpan Model Terlatih (Tensorflow versi 0.11 dan ke atas):
Contoh Kod:
import tensorflow as tf # Prepare input placeholders w1 = tf.placeholder("float", name="w1") w2 = tf.placeholder("float", name="w2") # Define test operation w3 = tf.add(w1, w2) w4 = tf.multiply(w3, tf.Variable(2.0, name="bias"), name="op_to_restore") # Initialize variables and run session sess = tf.Session() sess.run(tf.global_variables_initializer()) # Create saver object saver = tf.train.Saver() # Save the model saver.save(sess, 'my_test_model', global_step=1000)
Memulihkan Model yang Disimpan:
Kod Contoh:
# Restore model saver = tf.train.import_meta_graph('my_test_model-1000.meta') saver.restore(sess, tf.train.latest_checkpoint('./')) # Get placeholders and feed data w1 = sess.graph.get_tensor_by_name("w1:0") w2 = sess.graph.get_tensor_by_name("w2:0") feed_dict = {w1: 13.0, w2: 17.0} # Run saved operation op_to_restore = sess.graph.get_tensor_by_name("op_to_restore:0") result = sess.run(op_to_restore, feed_dict)
Atas ialah kandungan terperinci Bagaimana untuk Menyimpan dan Memulihkan Model Terlatih dengan Berkesan dalam TensorFlow?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!