


Bagaimana untuk Menambah Lajur Baharu dengan Betul pada Pandas DataFrame Selepas Operasi groupby().sum()?
Mencipta Lajur Baharu daripada Output panda groupby().sum()
Apabila melakukan pengiraan pada lajur dalam Pandas DataFrame menggunakan groupby() fungsi, selalunya perlu untuk memasukkan hasil kembali ke dalam DataFrame. Satu cara untuk mencapai matlamat ini ialah dengan membuat lajur baharu berdasarkan pengiraan terkumpul.
Dalam contoh yang disediakan, matlamatnya ialah untuk mencipta lajur baharu, Data4, yang mengandungi jumlah lajur Data3 untuk setiap Tarikh .
Kod yang dibentangkan cuba untuk menetapkan hasil terkumpul terus ke lajur baharu, tetapi ia menghasilkan nilai NaN. Untuk menyelesaikan isu ini, kaedah transform() hendaklah digunakan sebaliknya:
df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum')
Kaedah transform() mengembalikan Siri yang sejajar dengan indeks DataFrame, membenarkannya ditambahkan secara langsung sebagai lajur baharu . Parameter 'sum' menentukan pengiraan yang ingin kami lakukan.
Kod yang dikemas kini di bawah menunjukkan penggunaan transform():
import pandas as pd df = pd.DataFrame({ 'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 'Data2': [11, 8, 10, 15, 110, 60, 100, 40], 'Data3': [5, 8, 6, 1, 50, 100, 60, 120] }) df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum') print(df)
Output kod yang diubah suai mengira dengan betul jumlah Data3 untuk setiap Tarikh dan menambah hasil pada DataFrame sebagai lajur baharu Data4:
Date Sym Data2 Data3 Data4 0 2015-05-08 aapl 11 5 55 1 2015-05-07 aapl 8 8 108 2 2015-05-06 aapl 10 6 66 3 2015-05-05 aapl 15 1 121 4 2015-05-08 aaww 110 50 55 5 2015-05-07 aaww 60 100 108 6 2015-05-06 aaww 100 60 66 7 2015-05-05 aaww 40 120 121
Atas ialah kandungan terperinci Bagaimana untuk Menambah Lajur Baharu dengan Betul pada Pandas DataFrame Selepas Operasi groupby().sum()?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pythonlistsarepartofthestandardlibrary, sementara

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.
