Rumah pembangunan bahagian belakang Tutorial Python Membuat Apl Sembang AI Pertama Saya: Belajar Daripada DevOps Pass Integrasi Ollama AI

Membuat Apl Sembang AI Pertama Saya: Belajar Daripada DevOps Pass Integrasi Ollama AI

Dec 23, 2024 am 10:33 AM

Making My First AI Chat App: Learning From DevOps Pass AI

Blog yang saya gunakan sebagai sumber:

https://dev.to/devopspass-ai/workshop-make-your-first-ai-app-in-a-few-clicks-with-pythonollamallama3-31ib

Selepas menemui panduan DevOps Pass AI tentang membina apl AI dengan Ollama, saya memutuskan untuk meneroka cara ia berfungsi dan mendokumentasikan soalan dan pembelajaran saya sepanjang perjalanan. Inilah yang saya temui semasa membina aplikasi sembang AI pertama saya.

Soalan Awal Saya Ada

Apabila saya mula-mula membaca tutorial, beberapa soalan muncul di fikiran:

  1. Mengapa menggunakan Ollama dan bukannya membuat panggilan API terus ke OpenAI atau perkhidmatan lain?
  2. Apakah yang menjadikan Llama3 pilihan yang baik untuk model AI tempatan?
  3. Bagaimanakah ketekunan sejarah sembang berfungsi, dan mengapa ia penting?

Mari kita pelajari apa yang saya pelajari sambil meneroka setiap aspek ini.

Memahami Persediaan AI Setempat

Perkara menarik pertama yang saya perhatikan ialah penggunaan AI tempatan melalui Ollama. Selepas bertanya dan menguji, saya mendapati beberapa kelebihan utama:

  • Tiada kos API atau had penggunaan
  • Privasi lengkap kerana semuanya berjalan secara setempat
  • Tiada pergantungan internet selepas muat turun model awal
  • Prestasi yang mengejutkan dengan Llama3

Proses persediaan adalah mudah: (Bash)

hidangkan ollama
ollama tarik llama3

Saya pada mulanya bimbang tentang saiz model 4.7GB, tetapi muat turun adalah pantas pada sambungan saya dan ia berjalan lancar walaupun pada mesin pembangunan sederhana saya.

Meneroka Aplikasi Sembang

Bahagian yang paling menarik ialah betapa mudahnya lagi berfungsi aplikasi sembang. Mari kita pecahkan apa yang saya pelajari tentang setiap komponen:

Pengurusan Sejarah Sembang

Saya sangat ingin tahu tentang cara sejarah sembang berfungsi. Kod menggunakan pendekatan bijak: (python)

laluan_fail = sys.argv[1] '.json'
jika os.path.exists(file_path):
dengan open(file_path, 'r') sebagai f:
mesej = json.load(f)

Ini bermakna setiap sesi sembang mengekalkan fail sejarahnya sendiri. Saya menguji ini dengan memulakan berbilang perbualan: (Bash)

python app1.py coding_help
python app1.py devops_queries

bashCopypython app1.py coding_help
python app1.py devops_queries
Masing-masing mencipta fail JSON sendiri, memastikan perbualan berasingan dan berterusan.
Pengendalian Respons AI
Satu perkara yang menarik perhatian saya ialah pelaksanaan respons penstriman:
pythonCopystream = ollama.chat(
model='llama3',
mesej=mesej,
stream=Benar,
)

untuk bahagian dalam strim:
print(chunk['message']['content'], end='', flush=True)
Ini memberikan rasa yang lebih semula jadi kepada perbualan, kerana respons muncul secara beransur-ansur seperti menaip manusia dan bukannya serentak.
Menguji Kes Penggunaan Berbeza
Saya bereksperimen dengan pelbagai jenis soalan untuk memahami keupayaan model:

Soalan Teknikal
Salin>>> Bagaimanakah saya boleh menyediakan pemantauan Kubernetes?
Jawapannya adalah terperinci dan tepat dari segi teknikal.
Penjanaan Kod
Salin>>> Tulis fungsi Python untuk memantau penggunaan CPU
Ia memberikan contoh kod kerja dengan penjelasan.
Perbualan Kontekstual
Salin>>> Apakah amalan terbaik untuk itu?
Model mengekalkan konteks daripada soalan sebelumnya dengan berkesan.

Apa yang Saya Pelajari Tentang Prestasi
Beberapa pemerhatian menarik tentang menjalankan AI secara tempatan:

Respons pertama selepas bermula adalah perlahan sedikit (pemanasan model)
Maklum balas seterusnya adalah pantas
Kualiti respons sepadan dengan banyak perkhidmatan berasaskan awan
Tiada had pendikitan atau kadar untuk dibimbangkan

Soalan Saya Masih Ada
Selepas membina dan menguji aplikasi, saya ingin tahu tentang:

Bagaimana untuk memperhalusi model untuk kes penggunaan tertentu?
Bolehkah kita mengoptimumkan model untuk respons yang lebih pantas?
Apakah cara terbaik untuk menangani ralat atau respons yang tidak dijangka?

Kesimpulan: Adakah Ia Berbaloi Dibina?
Selepas bereksperimen dengan persediaan ini, saya akan katakan ia pasti berbaloi untuk dicuba jika anda:

Ingin belajar tentang integrasi AI
Perlukan penyelesaian AI yang memfokuskan privasi
Berminat untuk membina alatan AI tersuai
Ingin mengelakkan kos API untuk perkhidmatan AI

Keluk pembelajaran sangat lembut dan hasilnya mengagumkan untuk persediaan tempatan.
Soalan untuk Komuniti

Adakah sesiapa yang membina aplikasi AI tempatan yang serupa?
Apakah model lain yang telah anda cuba dengan Ollama?
Bagaimanakah anda mengendalikan kes ralat dalam aplikasi AI anda?

Beri tahu saya dalam ulasan - Saya amat berminat untuk mendengar tentang kes penggunaan dan penambahbaikan yang berbeza!

Atas ialah kandungan terperinci Membuat Apl Sembang AI Pertama Saya: Belajar Daripada DevOps Pass Integrasi Ollama AI. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1673
14
Tutorial PHP
1278
29
Tutorial C#
1257
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles