


Mengapakah prestasi `moving_avg_concurrent2` tidak bertambah baik dengan peningkatan serentak, walaupun membahagikan senarai kepada bahagian yang lebih kecil yang diproses oleh goroutin individu?
Mengapakah prestasi moving_avg_concurrent2 tidak bertambah baik dengan peningkatan pelaksanaan serentak?
moving_avg_concurrent2 membahagikan senarai kepada kepingan yang lebih kecil dan menggunakan satu goroutine untuk mengendalikan setiap bahagian. Atas sebab tertentu (tidak jelas sebabnya), fungsi menggunakan satu goroutine ini lebih pantas daripada moving_avg_serial4, tetapi menggunakan berbilang goroutine mula berprestasi lebih teruk daripada moving_avg_serial4.
Mengapakah moving_avg_concurrent3 jauh lebih perlahan daripada moving_avg_serial4?
Prestasi moving_avg_concurrent3 adalah lebih teruk daripada moving_avg_serial4 apabila menggunakan goroutine. Walaupun peningkatan num_goroutine boleh meningkatkan prestasi, ia masih lebih teruk daripada moving_avg_serial4.
Walaupun goroutin ringan, ia tidak sepenuhnya bebas, adakah mungkin overhed yang ditanggung adalah terlalu besar sehingga ia lebih perlahan daripada moving_avg_serial4?
Ya, walaupun goroutin ringan, ia tidak percuma. Apabila menggunakan berbilang goroutin, kos pelancaran, pengurusan dan penjadualannya mungkin melebihi faedah daripada peningkatan selari.
Kod
Fungsi:
// 返回包含输入移动平均值的列表(已提供,即未优化) func moving_avg_serial(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i, val := range input { old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = val if !NaN_in_slice(buffer) && first_time { sum := 0.0 for _, entry := range buffer { sum += entry } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) && !NaN_in_slice(buffer) { output[i] = output[i-1] + (val-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 重新排列控制结构以利用短路求值 func moving_avg_serial4(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i := range input { // fmt.Printf("in mvg_avg4: i=%v\n", i) old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = input[i] if first_time && !NaN_in_slice(buffer) { sum := 0.0 for j := range buffer { sum += buffer[j] } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) /* && !NaN_in_slice(buffer)*/ { output[i] = output[i-1] + (input[i]-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 将列表拆分为较小的片段以使用 goroutine,但不使用串行版本,即我们仅在开头具有 NaN,因此希望减少一些开销 // 仍然不能扩展(随着大小和 num_goroutines 的增加,性能下降) func moving_avg_concurrent2(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i < window_size-1; i++ { output[i] = math.NaN() } if len(input) > 0 { num_items := len(input) - (window_size - 1) var barrier_wg sync.WaitGroup n := num_items / num_goroutines go_avg := make([][]float64, num_goroutines) for i := 0; i < num_goroutines; i++ { go_avg[i] = make([]float64, 0, num_goroutines) } for i := 0; i < num_goroutines; i++ { barrier_wg.Add(1) go func(go_id int) { defer barrier_wg.Done() // 计算边界 var start, stop int start = go_id*int(n) + (window_size - 1) // 开始索引 // 结束索引 if go_id != (num_goroutines - 1) { stop = start + n // 结束索引 } else { stop = num_items + (window_size - 1) // 结束索引 } loc_avg := moving_avg_serial4(input[start-(window_size-1):stop], window_size) loc_avg = make([]float64, stop-start) current_sum := 0.0 for i := start - (window_size - 1); i < start+1; i++ { current_sum += input[i] } loc_avg[0] = current_sum / float64(window_size) idx := 1 for i := start + 1; i < stop; i++ { loc_avg[idx] = loc_avg[idx-1] + (input[i]-input[i-(window_size)])/float64(window_size) idx++ } go_avg[go_id] = append(go_avg[go_id], loc_avg...) }(i) } barrier_wg.Wait() for i := 0; i < num_goroutines; i++ { output = append(output, go_avg[i]...) } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 模式改变,我们选择主工作者模式并生成将由 goroutine 计算的每个窗口 func compute_window_avg(input, output []float64, start, end int) { sum := 0.0 size := end - start for _, val := range input[start:end] { sum += val } output[end-1] = sum / float64(size) } func moving_avg_concurrent3(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i < window_size-1; i++ { output[i] = math.NaN() } if len(input) > 0 { num_windows := len(input) - (window_size - 1) var output = make([]float64, len(input)) for i := 0; i < window_size-1; i++ {
Atas ialah kandungan terperinci Mengapakah prestasi `moving_avg_concurrent2` tidak bertambah baik dengan peningkatan serentak, walaupun membahagikan senarai kepada bahagian yang lebih kecil yang diproses oleh goroutin individu?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Golang lebih baik daripada Python dari segi prestasi dan skalabiliti. 1) Ciri-ciri jenis kompilasi Golang dan model konkurensi yang cekap menjadikannya berfungsi dengan baik dalam senario konvensional yang tinggi. 2) Python, sebagai bahasa yang ditafsirkan, melaksanakan perlahan -lahan, tetapi dapat mengoptimumkan prestasi melalui alat seperti Cython.

Golang lebih baik daripada C dalam kesesuaian, manakala C lebih baik daripada Golang dalam kelajuan mentah. 1) Golang mencapai kesesuaian yang cekap melalui goroutine dan saluran, yang sesuai untuk mengendalikan sejumlah besar tugas serentak. 2) C Melalui pengoptimuman pengkompil dan perpustakaan standard, ia menyediakan prestasi tinggi yang dekat dengan perkakasan, sesuai untuk aplikasi yang memerlukan pengoptimuman yang melampau.

GoisidealforbeginnersandSuekableforcloudandnetworkservicesduetoitssimplicity, kecekapan, danconcurrencyfeatures.1) installgofromtheofficialwebsiteandverifywith'goversion'.2)

Golang sesuai untuk pembangunan pesat dan senario serentak, dan C sesuai untuk senario di mana prestasi ekstrem dan kawalan peringkat rendah diperlukan. 1) Golang meningkatkan prestasi melalui pengumpulan sampah dan mekanisme konvensional, dan sesuai untuk pembangunan perkhidmatan web yang tinggi. 2) C mencapai prestasi muktamad melalui pengurusan memori manual dan pengoptimuman pengkompil, dan sesuai untuk pembangunan sistem tertanam.

Goimpactsdevelopmentpositivielythroughspeed, efficiency, andsimplicity.1) Speed: goCompilesquicklyandrunsefficiently, idealforlargeproject.2) Kecekapan: ITSComprehensivestandardlibraryraryrarexternaldependencies, enhingdevelyficiency.

Golang dan Python masing -masing mempunyai kelebihan mereka sendiri: Golang sesuai untuk prestasi tinggi dan pengaturcaraan serentak, sementara Python sesuai untuk sains data dan pembangunan web. Golang terkenal dengan model keserasiannya dan prestasi yang cekap, sementara Python terkenal dengan sintaks ringkas dan ekosistem perpustakaan yang kaya.

C lebih sesuai untuk senario di mana kawalan langsung sumber perkakasan dan pengoptimuman prestasi tinggi diperlukan, sementara Golang lebih sesuai untuk senario di mana pembangunan pesat dan pemprosesan konkurensi tinggi diperlukan. Kelebihan 1.C terletak pada ciri-ciri perkakasan dan keupayaan pengoptimuman yang tinggi, yang sesuai untuk keperluan berprestasi tinggi seperti pembangunan permainan. 2. Kelebihan Golang terletak pada sintaks ringkas dan sokongan konvensional semulajadi, yang sesuai untuk pembangunan perkhidmatan konvensional yang tinggi.

Perbezaan prestasi antara Golang dan C terutamanya ditunjukkan dalam pengurusan ingatan, pengoptimuman kompilasi dan kecekapan runtime. 1) Mekanisme pengumpulan sampah Golang adalah mudah tetapi boleh menjejaskan prestasi, 2) Pengurusan memori manual C dan pengoptimuman pengkompil lebih cekap dalam pengkomputeran rekursif.
