


Analisis Data Penerokaan: Menggali Melalui Tunggakan
Dalam kisah inspirasi Six Triple Eight, langkah pertama misi mereka adalah untuk menilai dan mengatur banyak tunggakan mel yang tidak dihantar. Tindanan ini, menjulang ke siling, perlu dikategorikan dan difahami sebelum sebarang kemajuan boleh dibuat. Dalam dunia pembelajaran mesin moden, fasa awal ini serupa dengan Analisis Data Penerokaan (EDA).
Untuk siri ini, kami akan meniru proses ini menggunakan set data CSV, di mana setiap baris mengandungi kategori (mis., "teknologi," "perniagaan") dan teks yang dikaitkan dengannya. Kategori berfungsi sebagai label, menunjukkan di mana setiap bahagian teks berada. Alat seperti Pandas untuk manipulasi data, Matplotlib untuk visualisasi, WordCloud untuk cerapan teks, Tiktoken untuk analisis token dan NLTK untuk pemprosesan teks akan membantu kami memahami set data kami.
Dalam langkah ini, kami akan:
Muatkan data dan periksa strukturnya.
Kenal pasti nilai yang hilang atau tidak konsisten yang boleh menghalang prestasi model kami.
Teroka pengedaran kategori untuk memahami keseimbangan antara label.
Visualkan kekerapan perkataan dalam data teks untuk mendedahkan corak.
Analisis kiraan token menggunakan Tiktoken untuk mengukur kerumitan.
Fasa EDA ini mencerminkan usaha pengisihan teliti Six Triple Eight, yang perlu memahami keadaan huru-hara sebelum mereka dapat mengatur. Dengan memahami set data kami secara terperinci, kami meletakkan asas untuk membina LLM diperhalusi yang mampu mengkategorikan dan mentafsir teks dengan tepat.
pengenalan
Analisis Data Penerokaan (EDA) adalah serupa dengan menangani tunggakan data yang menakutkan—bertindan tinggi, tidak teratur dan penuh dengan potensi yang belum diterokai. Sama seperti unit Six Triple Eight yang menangani tunggakan mel yang tidak dihantar semasa Perang Dunia II, EDA ialah cara kami menyaring kekacauan untuk mendedahkan cerapan, mengenal pasti arah aliran dan bersedia untuk peringkat analisis data seterusnya.
Dalam penerokaan ini, kami akan menyelami set data artikel berita BBC, membongkar strukturnya, menangani ketidakkonsistenan dan mendedahkan cerita yang terkubur dalam data."
Menilai Backlog: Gambaran Keseluruhan Set Data
Untuk bermula, kami mesti memahami skala dan struktur set data kami terlebih dahulu. Set data artikel berita BBC terdiri daripada 2,234 entri yang diedarkan merentas lima kategori: perniagaan, sukan, politik, teknologi dan hiburan. Setiap entri mempunyai dua ciri utama:
- kategori: Topik atau bahagian artikel.
- teks: Kandungan penuh artikel.
Untuk mendapatkan pandangan yang lebih jelas tentang perkara yang sedang kami usahakan, kami memuatkan data ke dalam Pandas DataFrame, melakukan pemeriksaan pantas dan menemui:
Membersihkan Backlog
Memandangkan Six Triple Eight menangani longgokan mel yang tidak diisih, kami juga perlu menyusun set data kami. Proses pembersihan melibatkan beberapa langkah utama:
Mengalih Keluar Pendua
Artikel pendua mengeruhkan set data. Selepas mengenal pasti dan mengalih keluar lebihan ini.Mengendalikan Nilai Yang Hilang
Walaupun set data kami agak bersih, kami memastikan bahawa sebarang nilai null berpotensi ditangani, tidak meninggalkan entri kosong dalam data akhir."
Memecahkan Kategori
Dengan tunggakan dihapuskan, kami menganalisis pengedaran artikel merentas kategori untuk mengenal pasti tema dominan. Inilah yang kami temui:
Kategori Teratas: Perniagaan dan sukan terikat untuk bahagian terbesar, setiap satu mengandungi 512 artikel.
Kategori Lebih Kecil: Hiburan, politik dan teknologi mempunyai lebih sedikit artikel tetapi menawarkan cerapan unik.
Pengagihan mengesahkan bahawa set data adalah seimbang, membolehkan kami menumpukan pada analisis yang lebih mendalam tanpa perlu risau tentang ketidakseimbangan kategori yang ketara."
Zum Masuk: Artikel Sukan Di Bawah Mikroskop
Sama seperti mengisih mel mengikut destinasinya, kami memilih untuk menumpukan pada kategori sukan untuk menyelam lebih mendalam. Matlamatnya adalah untuk menganalisis kandungan teks dan mengekstrak corak yang bermakna."
Penyingkiran Tokenisasi dan Kata Henti
Menggunakan pustaka NLTK, kami menandakan teks menjadi perkataan individu dan mengalih keluar kata henti biasa (cth., 'dan,' 'the,' 'is'). Ini membolehkan kami menumpukan pada perkataan yang lebih penting kepada kategori."Analisis Kekerapan Perkataan
Taburan kekerapan telah dibuat untuk mengenal pasti istilah yang paling biasa dalam artikel sukan. Tidak mengejutkan, perkataan seperti 'perlawanan,' 'pasukan' dan 'permainan' didominasi, mencerminkan sifat daya saing kandungan."
Membayangkan Penemuan: Awan Kata
Untuk menangkap intipati artikel sukan, kami menghasilkan awan perkataan. Istilah yang paling kerap digunakan kelihatan lebih besar, melukiskan gambaran jelas tentang tema teras kategori."
Pengambilan Utama
Sama seperti Six Triple Eight menyusun dan menghantar mel tertunggak dengan teliti, proses EDA kami telah mendedahkan pandangan tersusun dan berwawasan bagi set data berita BBC.
Kod
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
Atas ialah kandungan terperinci Analisis Data Penerokaan: Menggali Melalui Tunggakan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
