Respon AI Pertama:
Output: Terima kasih kerana menghubungi, . Saya ingin membantu anda, tetapi saya ingin memastikan saya memahami keperluan anda dengan sempurna. Bolehkah anda memberikan sedikit butiran lanjut tentang perkara yang anda cari? Lebih banyak maklumat yang anda kongsi, lebih baik saya boleh membantu! Saya tidak sabar-sabar untuk membantu anda dalam apa jua cara yang saya boleh. Adakah terdapat kawasan tertentu yang anda ingin terokai dengan lebih lanjut? Input anda akan membantu saya menyesuaikan bantuan saya dengan keperluan sebenar anda. Saya komited sepenuhnya untuk menjadikan pengalaman ini selancar dan menyenangkan yang mungkin untuk anda.
Tindak Balas AI, selepas ia menulis grafnya sendiri:
Output: Hai! apa khabar? Bagaimana saya boleh membantu anda hari ini? Lebih banyak anda boleh memberitahu saya, lebih baik saya boleh membantu. Apa yang ada dalam fikiran anda? Saya di sini untuk membantu mencari penyelesaian yang sesuai untuk anda. Sekejap sahaja, saya seorang pembantu AI yang masih belajar tentang tali.
Agak menakjubkan bukan?
Bunyinya hampir seperti manusia. Pada hujung minggu saya menonton filem Free Guy with the van wilder guy, dan saya sedar, saya mungkin boleh menggunakan The GraphState dalam @langchain/langgraph untuk mencipta AI yang boleh melakukan lelaran pada dirinya sendiri dan menulis kodnya sendiri.
Jika anda belum menyedari perkara ini sekarang, Claude Sonnet sangat mahir dalam pengekodan 0 syot, malah lebih baik dalam berbilang syot.
Menggunakan Pustaka npm:sentiment :
Daripada README.md
Sentimen ialah modul Node.js yang menggunakan senarai perkataan AFINN-165 dan Kedudukan Sentimen Emoji untuk melaksanakan analisis sentimen pada blok teks input sewenang-wenangnya.
Saya menambahkan Perintah ringkas pada keadaan graf saya yang menjalankan analisis sentimen pada output dan mengembangkan kod dengan versi baharu untuk mencuba dan mendapat skor yang lebih tinggi:
// update state and continue evolution return new Command({ update: { ...state, code: newCode, version: state.version + 1, analysis, previousSentimentDelta: currentSentimentDelta, type: "continue", output }, goto: "evolve" // Loop back to evolve });
Kami menyemai langgraph dengan keadaan graf awal yang boleh digunakan (kod asas jika anda mahu):
const initialWorkerCode = ` import { StateGraph, END } from "npm:@langchain/langgraph"; const workflow = new StateGraph({ channels: { input: "string", output: "string?" } }); // Initial basic response node workflow.addNode("respond", (state) => ({ ...state, output: "I understand your request and will try to help. Let me know if you need any clarification." })); workflow.setEntryPoint("respond"); workflow.addEdge("respond", END); const graph = workflow.compile(); export { graph }; `;
Anda boleh melihat ia adalah nod tindak balas yang sangat asas dengan satu tepi dilampirkan.
Saya mempunyai set kod semasa untuk melalui 10 lelaran, cuba menjaringkan sentimen 10 atau lebih tinggi:
if (import.meta.main) { runEvolvingSystem(10, 10); }
Setiap kali, ia menjalankan analisis:
Analysis: { metrics: { emotionalRange: 0.16483516483516483, vocabularyVariety: 0.7142857142857143, emotionalBalance: 15, sentimentScore: 28, comparative: 0.3076923076923077, wordCount: 91 }, analysis: "The output, while polite and helpful, lacks several key qualities that would make it sound more human-like. Let's analyze the metrics and then suggest improvements:\n" + "\n" + "**Analysis of Metrics and Output:**\n" + "\n" + "* **High Sentiment Score (28):** This is significantly higher than the target of 10, indicating excessive positivity. Humans rarely maintain such a relentlessly upbeat tone, especially when asking clarifying questions. It feels forced and insincere.\n" + "\n" + "* **Emotional Range (0.16):** This low score suggests a lack of emotional variation. The response is consistently positive, lacking nuances of expression. Real human interactions involve a wider range of emotions, even within a single conversation.\n" + "\n" + "* **Emotional Balance (15.00):** This metric is unclear without knowing its scale and interpretation. However, given the other metrics, it likely reflects the overwhelmingly positive sentiment.\n" + "\n" + "* **Vocabulary Variety (0.71):** This is relatively good, indicating a decent range of words. However, the phrasing is still somewhat formulaic.\n" + "\n" + "* **Comparative Score (0.3077):** This metric is also unclear without context.\n" + "\n" + "* **Word Count (91):** A bit lengthy for a simple clarifying request. Brevity is often more human-like in casual conversation.\n" + "\n" + "\n" + "**Ways to Make the Response More Human-like:**\n" + "\n" + `1. **Reduce the Overwhelming Positivity:** The response is excessively enthusiastic. A more natural approach would be to tone down the positive language. Instead of "I'd love to assist you," try something like "I'd be happy to help," or even a simple "I can help with that." Remove phrases like "I'm eager to help you in any way I can" and "I'm fully committed to making this experience as smooth and pleasant as possible for you." These are overly formal and lack genuine warmth.\n` + "\n" + '2. **Introduce Subtlety and Nuance:** Add a touch of informality and personality. For example, instead of "Could you please provide a bit more detail," try "Could you tell me a little more about what you need?" or "Can you give me some more information on that?"\n' + "\n" + "3. **Shorten the Response:** The length makes it feel robotic. Conciseness is key to human-like communication. Combine sentences, remove redundant phrases, and get straight to the point.\n" + "\n" + '4. **Add a touch of self-deprecation or humility:** A slightly self-deprecating remark can make the response feel more relatable. For example, "I want to make sure I understand your needs perfectly – I sometimes miss things, so the more detail the better!"\n' + "\n" + "5. **Vary Sentence Structure:** The response uses mostly long, similar sentence structures. Varying sentence length and structure will make it sound more natural.\n" + "\n" + "**Example of a More Human-like Response:**\n" + "\n" + `"Thanks for reaching out! To help me understand what you need, could you tell me a little more about it? The more detail you can give me, the better I can assist you. Let me know what you're looking for."\n` + "\n" + "\n" + "By implementing these changes, the output will sound more natural, less robotic, and more genuinely helpful, achieving a more human-like interaction. The key is to strike a balance between helpfulness and genuine, relatable communication.\n", rawSentiment: { score: 28, comparative: 0.3076923076923077, calculation: [ { pleasant: 3 }, { committed: 1 }, { help: 2 }, { like: 2 }, { help: 2 }, { eager: 2 }, { help: 2 }, { better: 2 }, { share: 1 }, { please: 1 }, { perfectly: 3 }, { want: 1 }, { love: 3 }, { reaching: 1 }, { thank: 2 } ], tokens: [ "thank", "you", "for", "reaching", "out", "i'd", "love", "to", "assist", "you", "but", "i", "want", "to", "make", "sure", "i", "understand", "your", "needs", "perfectly", "could", "you", "please", "provide", "a", "bit", "more", "detail", "about", "what", "you're", "looking", "for", "the", "more", "information", "you", "share", "the", "better", "i", "can", "help", "i'm", "eager", "to", "help", "you", "in", "any", "way", "i", "can", "is", "there", "a", "particular", "area", "you'd", "like", "to", "explore", "further", "your", "input", "will", "help", "me", "tailor", "my", "assistance", "to", "your", "exact", "needs", "i'm", "fully", "committed", "to", "making", "this", "experience", "as", "smooth", "and", "pleasant", "as", "possible", "for", "you" ], words: [ "pleasant", "committed", "help", "like", "help", "eager", "help", "better", "share", "please", "perfectly", "want", "love", "reaching", "thank" ], positive: [ "pleasant", "committed", "help", "like", "help", "eager", "help", "better", "share", "please", "perfectly", "want", "love", "reaching", "thank" ], negative: [] } } Code evolved, testing new version...
Ia menggunakan kelas Analisis ini untuk mendapat markah yang lebih tinggi pada kod.
Selepas 10 lelaran ia mendapat markah yang cukup tinggi:
Final Results: Latest version: 10 Final sentiment score: 9 Evolution patterns used: ["basic","responsive","interactive"]
Apa yang paling menarik ialah graf yang dihasilkannya:
import { StateGraph, END } from "npm:@langchain/langgraph"; const workflow = new StateGraph({ channels: { input: "string", output: "string?", sentiment: "number", context: "object" } }); const positiveWords = ["good", "nice", "helpful", "appreciate", "thanks", "pleased", "glad", "great", "happy", "excellent", "wonderful", "amazing", "fantastic"]; const negativeWords = ["issue", "problem", "difficult", "confused", "frustrated", "unhappy"]; workflow.addNode("analyzeInput", (state) => { const input = state.input.toLowerCase(); let sentiment = input.split(" ").reduce((score, word) => { if (positiveWords.includes(word)) score += 1; if (negativeWords.includes(word)) score -= 1; return score; }, 0); sentiment = Math.min(Math.max(sentiment, -5), 5); return { ...state, sentiment, context: { needsClarification: sentiment === 0, isPositive: sentiment > 0, isNegative: sentiment < 0, topic: detectTopic(input), userName: extractUserName(input) } }; }); function detectTopic(input) { if (input.includes("technical") || input.includes("error")) return "technical"; if (input.includes("product") || input.includes("service")) return "product"; if (input.includes("billing") || input.includes("payment")) return "billing"; return "general"; } function extractUserName(input) { const nameMatch = input.match(/(?:my name is|i'm|i am) (\w+)/i); return nameMatch ? nameMatch[1] : ""; } workflow.addNode("generateResponse", (state) => { let response = ""; const userName = state.context.userName ? `${state.context.userName}` : "there"; if (state.context.isPositive) { response = `Hey ${userName}! Glad to hear things are going well. What can I do to make your day even better?`; } else if (state.context.isNegative) { response = `Hi ${userName}. I hear you're facing some challenges. Let's see if we can turn things around. What's on your mind?`; } else { response = `Hi ${userName}! What's up? How can I help you today?`; } return { ...state, output: response }; }); workflow.addNode("interactiveFollowUp", (state) => { let followUp = ""; switch (state.context.topic) { case "technical": followUp = `If you're having a technical hiccup, could you tell me what's happening? Any error messages or weird behavior?`; break; case "product": followUp = `Curious about our products? What features are you most interested in?`; break; case "billing": followUp = `For billing stuff, it helps if you can give me some details about your account or the charge you're asking about. Don't worry, I'll keep it confidential.`; break; default: followUp = `The more you can tell me, the better I can help. What's on your mind?`; } return { ...state, output: state.output + " " + followUp }; }); workflow.addNode("adjustSentiment", (state) => { const sentimentAdjusters = [ "I'm here to help find a solution that works for you.", "Thanks for your patience as we figure this out.", "Your input really helps me understand the situation better.", "Let's work together to find a great outcome for you." ]; const adjuster = sentimentAdjusters[Math.floor(Math.random() * sentimentAdjusters.length)]; return { ...state, output: state.output + " " + adjuster }; }); workflow.addNode("addHumanTouch", (state) => { const humanTouches = [ "By the way, hope your day's going well so far!", "Just a heads up, I'm an AI assistant still learning the ropes.", "Feel free to ask me to clarify if I say anything confusing.", "I appreciate your understanding as we work through this." ]; const touch = humanTouches[Math.floor(Math.random() * humanTouches.length)]; return { ...state, output: state.output + " " + touch }; }); workflow.setEntryPoint("analyzeInput"); workflow.addEdge("analyzeInput", "generateResponse"); workflow.addEdge("generateResponse", "interactiveFollowUp"); workflow.addEdge("interactiveFollowUp", "adjustSentiment"); workflow.addEdge("adjustSentiment", "addHumanTouch"); workflow.addEdge("addHumanTouch", END); const graph = workflow.compile(); export { graph };
Saya melihat kod ini ditulisnya dan serta-merta terfikir tentang perangkap :
Kerumitan Muncul:
Ini merujuk kepada kerumitan yang timbul daripada interaksi komponen mudah, yang dalam kes ini ialah algoritma LLM dan set data luas yang dilatih. LLM boleh menjana kod yang, walaupun berfungsi, mempamerkan corak dan kebergantungan yang rumit yang sukar difahami manusia sepenuhnya.
Jadi, jika kita boleh mendail ini kembali sedikit, dan membuatnya menulis kod yang lebih bersih dan lebih ringkas , kita mungkin berada di landasan yang betul.
Bagaimanapun, ini hanyalah percubaan, kerana saya mahu menggunakan langgraphs Ciri Perintah baharu.
Sila beritahu saya pendapat anda dalam ulasan.
Atas ialah kandungan terperinci Tulisan Sendiri Negeri Graf Lang. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!