Jadual Kandungan
Bilakah Saya Perlu (Tidak) Menggunakan pandas.apply() dalam Kod Saya?
Pengenalan
Mengapa apply() Lambat?
Bila Perlu Elakkan apply()
Bila Gunakan apply()
GroupBy.apply() Pertimbangan
Kaveat Lain
Kesimpulan
Rumah pembangunan bahagian belakang Tutorial Python Bilakah Saya Harus Menggunakan (dan Bilakah Saya Perlu Mengelak) pandas.apply()?

Bilakah Saya Harus Menggunakan (dan Bilakah Saya Perlu Mengelak) pandas.apply()?

Dec 27, 2024 pm 05:05 PM

When Should I Use (and When Should I Avoid) pandas.apply()?

Bilakah Saya Perlu (Tidak) Menggunakan pandas.apply() dalam Kod Saya?

Pengenalan

pandas.apply() ialah alat yang berkuasa yang membolehkan pengguna menggunakan fungsi pada baris atau lajur DataFrame atau Siri. Walau bagaimanapun, ia telah diketahui lebih perlahan daripada kaedah lain, yang membawa kepada persoalan bila ia harus digunakan dan dielakkan. Artikel ini mengkaji sebab di sebalik isu prestasi apply() dan menyediakan garis panduan praktikal tentang cara menghapuskan penggunaannya.

Mengapa apply() Lambat?

apply() mengira keputusan untuk setiap baris atau lajur secara individu, yang boleh menjadi tidak cekap apabila operasi bervektor tersedia. Selain itu, apply() menimbulkan overhed dengan mengendalikan penjajaran, mengendalikan hujah yang kompleks dan memperuntukkan memori.

Bila Perlu Elakkan apply()

Gunakan alternatif bervektor apabila boleh. Bervektor operasi, seperti yang disediakan oleh NumPy atau fungsi vektor panda sendiri, beroperasi pada keseluruhan tatasusunan sekaligus, menghasilkan peningkatan prestasi yang ketara.

Elakkan apply() untuk manipulasi rentetan. Panda menyediakan fungsi rentetan yang dioptimumkan yang divektorkan dan lebih pantas daripada panggilan apply() berasaskan rentetan.

Gunakan pemahaman senarai untuk letupan lajur. Meletup lajur senarai menggunakan apply() ialah tidak cekap. Lebih suka menggunakan pemahaman senarai atau menukar lajur kepada senarai dan menyerahkannya kepada pd.DataFrame().

Bila Gunakan apply()

Fungsi tidak divektorkan untuk DataFrames . Terdapat fungsi yang divektorkan untuk Siri tetapi bukan DataFrames. Contohnya, pd.to_datetime() boleh digunakan dengan apply() untuk menukar berbilang lajur kepada datetime.

Fungsi kompleks yang memerlukan pemprosesan mengikut baris. Dalam kes tertentu, mungkin perlu menggunakan fungsi kompleks yang memerlukan pemprosesan mengikut baris. Walau bagaimanapun, ini harus dielakkan jika boleh.

GroupBy.apply() Pertimbangan

Gunakan operasi GroupBy yang divektorkan. Operasi GroupBy mempunyai alternatif tervektor yang boleh menjadi lebih cekap.

Elakkan memohon() untuk transformasi berantai. Rangkaian berbilang operasi dalam GroupBy.apply() boleh mengakibatkan lelaran yang tidak perlu. Gunakan panggilan GroupBy yang berasingan jika boleh.

Kaveat Lain

apply() beroperasi pada baris pertama dua kali. Ia perlu menentukan sama ada fungsi mempunyai kesan sampingan, yang boleh prestasi impak.

Penggunaan memori. apply() menggunakan sejumlah besar memori, menjadikannya tidak sesuai untuk aplikasi terikat memori.

Kesimpulan

pandas.apply() ialah fungsi yang boleh diakses, tetapi had prestasinya harus dipertimbangkan dengan teliti. Untuk mengelakkan isu prestasi, adalah penting untuk mengenal pasti alternatif bervektor, meneroka pilihan yang cekap untuk manipulasi rentetan dan menggunakan apply() dengan bijak apabila tiada pilihan lain tersedia. Dengan memahami sebab di sebalik ketidakcekapannya, pembangun boleh menulis kod panda yang cekap dan boleh diselenggara.

Atas ialah kandungan terperinci Bilakah Saya Harus Menggunakan (dan Bilakah Saya Perlu Mengelak) pandas.apply()?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Apr 01, 2025 pm 05:09 PM

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Apr 01, 2025 pm 11:15 PM

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Apr 01, 2025 pm 10:51 PM

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Bagaimana untuk mendapatkan data berita yang melangkaui mekanisme anti-crawler Investing.com? Bagaimana untuk mendapatkan data berita yang melangkaui mekanisme anti-crawler Investing.com? Apr 02, 2025 am 07:03 AM

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...

See all articles