Rumah pembangunan bahagian belakang Tutorial Python Projek Mata Kuliah Kecerdasan Buatan - Pengecaman Ekspresi Wajah

Projek Mata Kuliah Kecerdasan Buatan - Pengecaman Ekspresi Wajah

Dec 29, 2024 pm 05:19 PM

Penjelasan Ringkas

Projek "Pengecaman Ekspresi Wajah" bertujuan untuk mengenali ekspresi muka manusia menggunakan kaedah Convolutional Neural Network (CNN). Algoritma CNN digunakan untuk menganalisis data visual seperti imej muka dalam format skala kelabu, yang kemudiannya diklasifikasikan kepada tujuh kategori ekspresi asas: gembira, sedih, marah, terkejut, takut, jijik dan neutral. Model ini dilatih menggunakan set data FER2013 dan berjaya mencapai ketepatan 91.67% selepas latihan selama 500 zaman.

Matlamat Projek

Projek "Face Expression Recognition" ini merupakan projek akhir kursus Kepintaran Buatan di mana dalam projek ini terdapat pencapaian yang perlu dicapai antaranya:

  1. Membangunkan sistem pengecaman ekspresi muka berasaskan kecerdasan buatan. Sistem ini dijangka dapat mengenal pasti emosi yang terpancar daripada mimik muka secara automatik dan tepat.
  2. Percubaan dengan algoritma pembelajaran mesin untuk meningkatkan ketepatan pengecaman ekspresi muka. Dalam projek ini, algoritma CNN diuji untuk memahami sejauh mana model ini dapat mengenali corak kompleks dalam imej muka. Usaha ini juga termasuk mengoptimumkan parameter model, menambah data latihan dan menggunakan kaedah penambahan data.

Tech Stack Digunakan

  1. Kerangka: Python menggunakan perpustakaan seperti TensorFlow/Keras untuk pelaksanaan CNN.
  2. Set Data: Set data yang digunakan ialah FER2013 (Pengecaman Ekspresi Wajah 2013), yang mengandungi 35,887 imej skala kelabu wajah dengan dimensi 48x48 piksel. Imej ini disertakan dengan label yang meliputi tujuh kategori ungkapan asas.
  3. Alat: 
  • NumPy dan Pandas untuk manipulasi data.
  • Matplotlib untuk visualisasi.
  • Haar Cascade untuk pengesanan muka daripada kamera.

Keputusan

  1. Gembira Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  2. Sedih Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  3. Marah Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  4. Neutral Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  5. Terkejut Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  6. Takut Project Mata Kuliah Artificial Intelligence - Face Expression Recognition
  7. Menjijikkan Project Mata Kuliah Artificial Intelligence - Face Expression Recognition

Masalah dan Cara Saya Mengatasinya

  1. Masalah perbezaan pencahayaan yang menjejaskan tahap ketepatan. 
    Variasi pencahayaan boleh menjejaskan ketepatan model. Untuk mengatasinya, normalisasi data dijalankan bagi memastikan pencahayaan dalam imej lebih seragam supaya corak dalam imej muka dapat dikenali dengan lebih baik.

  2. Kerumitan ungkapan yang serupa.
    Sesetengah ungkapan, seperti "takut" dan "terkejut," mempunyai ciri serupa yang sukar untuk dibezakan oleh model. Penyelesaian yang dilaksanakan adalah untuk menjalankan penambahan data seperti putaran, zum, flipping dan perubahan kontras untuk meningkatkan keupayaan generalisasi model kepada data baharu.

  3. set data yang agak terhad
    Set data FER2013, walaupun agak besar, tidak merangkumi rangkaian penuh variasi wajah di seluruh dunia. Untuk memperkayakan set data, saya menggunakan teknik penambahan data dan menambahkan data daripada sumber lain yang berkaitan untuk mencipta perwakilan ekspresi muka yang lebih baik.

Pengajaran

Projek ini memberikan pandangan mendalam tentang cara sistem berasaskan kecerdasan buatan boleh digunakan untuk mengecam ekspresi muka. Proses pembangunan menunjukkan kepentingan:

  1. Pra-pemprosesan data untuk menangani isu pencahayaan dan meningkatkan kualiti data.
  2. Uji parameter latihan untuk mendapatkan gabungan optimum, seperti menetapkan bilangan zaman, kadar pembelajaran dan saiz kelompok.
  3. Meningkatkan kepelbagaian data latihan melalui penambahan untuk meningkatkan prestasi model berbanding data dunia sebenar.

Dengan mengatasi cabaran sedia ada, projek ini berjaya membina model pengecaman ekspresi muka yang boleh digunakan pada pelbagai aplikasi seperti interaksi manusia-komputer, analisis emosi dan pemantauan psikologi.

Atas ialah kandungan terperinci Projek Mata Kuliah Kecerdasan Buatan - Pengecaman Ekspresi Wajah. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1655
14
Tutorial PHP
1252
29
Tutorial C#
1226
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles