picit dalam PyTorch

Barbara Streisand
Lepaskan: 2025-01-01 05:02:09
asal
125 orang telah melayarinya

squeeze in PyTorch

Beli Saya Kopi☕

*Siaran saya menerangkan unsqueeze().

squeeze() boleh mendapatkan 0D atau lebih D tensor sifar atau lebih elemen yang sifar atau lebih dimensinya dialih keluar jika saiznya ialah 1 daripada 0D atau lebih D tensor sifar atau lebih elemen seperti yang ditunjukkan di bawah:

*Memo:

  • squeeze() boleh digunakan dengan obor atau tensor.
  • Argumen(input) pertama dengan obor atau menggunakan tensor(Jenis Diperlukan:tensor int, float, kompleks atau bool).
  • Argumen ke-2 dengan obor atau argumen pertama atau lebih dengan tensor adalah malap(Optional-Type:int, tuple of int atau list of int): *Memo:
    • Setiap nombor mestilah unik.
    • Ia boleh mengalih keluar sifar tertentu atau lebih dimensi yang saiznya ialah 1.
    • Jika saiznya bukan 1, sifar atau lebih dimensi tidak dialih keluar walaupun anda menetapkannya.
import torch

my_tensor = torch.tensor([[[[0], [1]],
                           [[2], [3]],
                           [[4], [5]]]])
torch.squeeze(input=my_tensor)
my_tensor.squeeze()
torch.squeeze(input=my_tensor, dim=(0, 3))
my_tensor.squeeze(dim=(0, 3))
my_tensor.squeeze(0, 3)
torch.squeeze(input=my_tensor, dim=(0, 1, 3))
my_tensor.squeeze(dim=(0, 1, 3))
my_tensor.squeeze(0, 1, 3)
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3))
my_tensor.squeeze(dim=(0, 1, 2, 3))
my_tensor.squeeze(0, 1, 2, 3)
etc.
# tensor([[0, 1],
#         [2, 3],
#         [4, 5]])

torch.squeeze(input=my_tensor, dim=0)
torch.squeeze(input=my_tensor, dim=-4)
torch.squeeze(input=my_tensor, dim=(0,))
torch.squeeze(input=my_tensor, dim=(-4,))
torch.squeeze(input=my_tensor, dim=(0, 1))
torch.squeeze(input=my_tensor, dim=(0, 2))
torch.squeeze(input=my_tensor, dim=(0, -2))
torch.squeeze(input=my_tensor, dim=(0, -3))
torch.squeeze(input=my_tensor, dim=(1, 0))
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2))
etc.
# tensor([[[0], [1]],
#         [[2], [3]],
#         [[4], [5]]])

torch.squeeze(input=my_tensor, dim=1)
torch.squeeze(input=my_tensor, dim=2)
torch.squeeze(input=my_tensor, dim=-2)
torch.squeeze(input=my_tensor, dim=-3)
torch.squeeze(input=my_tensor, dim=())
torch.squeeze(input=my_tensor, dim=(1,))
torch.squeeze(input=my_tensor, dim=(2,))
torch.squeeze(input=my_tensor, dim=(-2,))
torch.squeeze(input=my_tensor, dim=(-3,))
torch.squeeze(input=my_tensor, dim=(1, 2))
etc.
# tensor([[[[0], [1]],
#          [[2], [3]],
#          [[4], [5]]]])

torch.squeeze(input=my_tensor, dim=3)
torch.squeeze(input=my_tensor, dim=-1)
torch.squeeze(input=my_tensor, dim=(3,))
torch.squeeze(input=my_tensor, dim=(-1,))
torch.squeeze(input=my_tensor, dim=(1, 3))
torch.squeeze(input=my_tensor, dim=(1, -1))
torch.squeeze(input=my_tensor, dim=(2, 3))
torch.squeeze(input=my_tensor, dim=(2, -1))
torch.squeeze(input=my_tensor, dim=(3, 1))
etc.
torch.squeeze(input=my_tensor, dim=(1, 2, 3))
etc.
# tensor([[[0, 1],
#          [2, 3],
#          [4, 5]]])

my_tensor = torch.tensor([[[[0.], [1.]],
                           [[2.], [3.]],
                           [[4.], [5.]]]])
torch.squeeze(input=my_tensor)
# tensor([[0., 1.],
#         [2., 3.],
#         [4., 5.]])

my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]],
                           [[2.+0.j], [3.+0.j]],
                           [[4.+0.j], [5.+0.j]]]])
torch.squeeze(input=my_tensor)
# tensor([[0.+0.j, 1.+0.j],
#         [2.+0.j, 3.+0.j],
#         [4.+0.j, 5.+0.j]])

my_tensor = torch.tensor([[[[True], [False]],
                           [[False], [True]],
                           [[True], [False]]]])
torch.squeeze(input=my_tensor)
# tensor([[True, False],
#         [False, True],
#         [True, False]])
Salin selepas log masuk

Atas ialah kandungan terperinci picit dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:dev.to
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan