pow dalam PyTorch

Mary-Kate Olsen
Lepaskan: 2025-01-01 12:33:10
asal
399 orang telah melayarinya

pow in PyTorch

Beli Saya Kopi☕

*Memo:

  • Siaran saya menerangkan segi empat sama().
  • Siaran saya menerangkan float_power().
  • Siaran saya menerangkan abs() dan sqrt().
  • Siaran saya menerangkan gcd() dan lcm().
  • Siaran saya menerangkan trace(), reciprocal() dan rsqrt().

pow() boleh mendapatkan 0D atau lebih D tensor sifar atau lebih kuasa daripada dua daripada 0D atau lebih D tensor sifar atau lebih elemen atau 0D atau lebih D tensor sifar atau lebih elemen dan skalar seperti yang ditunjukkan di bawah:

*Memo:

  • pow() boleh digunakan dengan obor atau tensor.
  • Argumen(input) pertama dengan obor(Jenis Diperlukan:tensor atau skalar int, apungan atau kompleks) atau menggunakan tensor(Jenis-Diperlukan:tensor int, apungan atau kompleks). *obor mesti menggunakan skalar tanpa input=.
  • Argumen ke-2 dengan obor atau argumen pertama dengan tensor ialah eksponen(Jenis-Jenis:tensor atau skalar int, apungan atau kompleks). *Skalar negatif tidak boleh digunakan.
  • Terdapat hujah dengan obor(Pilihan-Lalai:Tiada-Jenis:tensor): *Memo:
    • out= mesti digunakan.
    • Siaran saya menerangkan hujah.
  • Gabungan skalar(input atau tensor) dan skalar(eksponen) tidak boleh digunakan.
  • Gabungan tensor(input(bool) atau tensor(bool)) dan skalar(exponent(bool)) berfungsi.
import torch

tensor1 = torch.tensor(-3)
tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3])

torch.pow(input=tensor1, exponent=tensor2)
tensor1.pow(exponent=tensor2)
# tensor([0, 0, 0, 0, 1, -3, 9, -27])

torch.pow(-3, exponent=tensor2)
# tensor([0, 0, 0, 0, 1, -3, 9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor(-27)

tensor1 = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4])
tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([0, 1, 0, 0, 1, -5, 0, -64])

torch.pow(-3, exponent=tensor2)
# tensor([0, 0, 0, 0, 1, -3, 9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor([-27, 1, -8, 27, 125, -125, 0, -64])

tensor1 = torch.tensor([[-3, 1, -2, 3], [5, -5, 0, -4]])
tensor2 = torch.tensor([0, 1, 2, 3])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[1, 1, 4, 27], [1, -5, 0, -64]])

torch.pow(-3, exponent=tensor2)
# tensor([1, -3, 9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor([[-27, 1, -8, 27], [125, -125, 0, -64]])

tensor1 = torch.tensor([[[-3, 1], [-2, 3]],
                        [[5, -5], [0, -4]]])
tensor2 = torch.tensor([2, 3])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[[9, 1], [4, 27]],
#         [[25, -125], [0, -64]]])

torch.pow(-3, exponent=tensor2)
# tensor([9, -27])

torch.pow(input=tensor1, exponent=3)
# tensor([[[-27, 1], [-8, 27]],
#         [[125, -125], [0, -64]]])

tensor1 = torch.tensor([[[-3., 1.], [-2., 3.]],
                        [[5., -5.], [0., -4.]]])
tensor2 = torch.tensor([2., 3.])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[[9., 1.], [4., 27.]],
#         [[25., -125.], [0., -64.]]])

torch.pow(-3., exponent=tensor2)
# tensor([9., -27.])

torch.pow(input=tensor1, exponent=3.)
# tensor([[[-27., 1.], [-8., 27.]],
#         [[125., -125.], [0., -64.]]])

tensor1 = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]],
                        [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]])
tensor2 = torch.tensor([2.+0.j, 3.+0.j])

torch.pow(input=tensor1, exponent=tensor2)
# tensor([[[9.0000+1.5736e-06j, 1.0000+0.0000e+00j],
#          [4.0000+6.9938e-07j, 27.0000+0.0000e+00j]],
#         [[25.0000+0.0000e+00j, -125.0000-2.9812e-06j],
#          [0.0000-0.0000e+00j, -64.0000-1.5264e-06j]]])

torch.pow(-3.+0.j, exponent=tensor2)
# tensor([9.0000+1.5736e-06j, -27.0000-6.4394e-07j])

torch.pow(input=tensor1, exponent=3.+0.j)
# tensor([[[-27.+0.j, 1.+0.j],
#          [-8.+0.j, 27.+0.j]],
#         [[125.+0.j, -125.+0.j],
#          [0.+0.j, -64.+0.j]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.pow(input=my_tensor, exponent=True)
# tensor([[[True, False], [True, False]],
#         [[False, True], [False, True]]])
Salin selepas log masuk

Atas ialah kandungan terperinci pow dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan