Memanggil LangChain dari Go (Bahagian 1)
Motivasi
Susulan ujian "cuti" saya (siaran sebelumnya…) tentang menggunakan Golang dan LLM, saya sedang mencari cara mudah untuk melaksanakan panggilan LangChain dalam Go, dan sebaik-baiknya menggunakan watsonx.ai.
Nasib baik saya menjumpai repositori Github berikut: https://github.com/tmc/langchaingo (curtsy to Travis Cline https://github.com/tmc).
Dalam repositorinya, terdapat folder khusus ini: https://github.com/tmc/langchaingo/blob/main/examples/watsonx-llm-example/watsonx_example.go yang menarik perhatian saya!
Jadi seperti biasa saya membina projek dan cuba melaksanakannya dan juga meletakkan idea saya sendiri (à ma sos ?).
Perlaksanaan
Seperti biasa kerana terdapat keperluan pada pembolehubah persekitaran, saya menyediakan fail .env yang kemudiannya digunakan dalam apl.
export WATSONX_API_KEY="your-watsonx-api-key" export WATSONX_PROJECT_ID="your-watsonx-projectid" # I used the US-SOUTH, could be any other region of IBM Cloud export SERVICE_URL="https://us-south.ml.cloud.ibm.com"
Dalam catatan sebelum ini saya menyebut cuba mengira bilangan token yang dihantar dan diterima daripada LLM. Kerja itu masih WIP, jadi saya menggunakan terus pustaka "tiktoken-go" dalam apl saya dengan idea untuk membuat beberapa perubahan padanya (dalam masa terdekat?). Bagaimanapun, dalam kes keadaan kemajuan saya sekarang, ia tidak begitu berkesan, tetapi ia ada.
Untuk apl itu sendiri, saya menggunakan kod Travis daripada repositorinya hampir seperti sedia ada, dan menambah serta membungkusnya dengan ciri berikut;
- menggunakan kotak dialog untuk input segera (? Saya suka kotak dialog ?)
- “percubaan” untuk mengira bilangan “token” yang dihantar dan diterima semula daripada LLM. Kod dengan sendirinya adalah seperti berikut;
package main import ( "context" "fmt" "log" "os" "os/exec" "runtime" "fyne.io/fyne/v2" "fyne.io/fyne/v2/app" "fyne.io/fyne/v2/container" "fyne.io/fyne/v2/dialog" "fyne.io/fyne/v2/widget" "github.com/joho/godotenv" "github.com/pkoukk/tiktoken-go" "github.com/tmc/langchaingo/llms" "github.com/tmc/langchaingo/llms/watsonx" ) const ( _tokenApproximation = 4 ) const ( _gpt35TurboContextSize = 4096 _gpt432KContextSize = 32768 _gpt4ContextSize = 8192 _textDavinci3ContextSize = 4097 _textBabbage1ContextSize = 2048 _textAda1ContextSize = 2048 _textCurie1ContextSize = 2048 _codeDavinci2ContextSize = 8000 _codeCushman1ContextSize = 2048 _textBisonContextSize = 2048 _chatBisonContextSize = 2048 _defaultContextSize = 2048 ) // nolint:gochecknoglobals var modelToContextSize = map[string]int{ "gpt-3.5-turbo": _gpt35TurboContextSize, "gpt-4-32k": _gpt432KContextSize, "gpt-4": _gpt4ContextSize, "text-davinci-003": _textDavinci3ContextSize, "text-curie-001": _textCurie1ContextSize, "text-babbage-001": _textBabbage1ContextSize, "text-ada-001": _textAda1ContextSize, "code-davinci-002": _codeDavinci2ContextSize, "code-cushman-001": _codeCushman1ContextSize, } var tokens int func runCmd(name string, arg ...string) { cmd := exec.Command(name, arg...) cmd.Stdout = os.Stdout cmd.Run() } func ClearTerminal() { switch runtime.GOOS { case "darwin": runCmd("clear") case "linux": runCmd("clear") case "windows": runCmd("cmd", "/c", "cls") default: runCmd("clear") } } func promptEntryDialog() string { var promptEntry string // Create a new Fyne application myApp := app.New() myWindow := myApp.NewWindow("Prompt Entry Dialog") // Variable to store user input var userInput string // Button to show the dialog button := widget.NewButton("Click to Enter your prompt's text", func() { entry := widget.NewEntry() dialog.ShowCustomConfirm("Input Dialog", "OK", "Cancel", entry, func(confirm bool) { if confirm { userInput = entry.Text promptEntry = userInput fmt.Println("User Input:", userInput) // Print to the console myWindow.Close() } }, myWindow) }) // Add the button to the window myWindow.SetContent(container.NewVBox( widget.NewLabel("Click the button below to enter text:"), button, )) // Set the window size and run the application myWindow.Resize(fyne.NewSize(400, 200)) myWindow.ShowAndRun() return promptEntry } func CountTokens(model, text string, inorout string) int { var txtLen int e, err := tiktoken.EncodingForModel(model) if err != nil { e, err = tiktoken.GetEncoding("gpt2") if err != nil { log.Printf("[WARN] Failed to calculate number of tokens for model, falling back to approximate count") txtLen = len([]rune(text)) fmt.Println("Guessed tokens for the "+inorout+" text:", txtLen/_tokenApproximation) return txtLen } } return len(e.Encode(text, nil, nil)) } func GetModelContextSize(model string) int { contextSize, ok := modelToContextSize[model] if !ok { return _defaultContextSize } return contextSize } func CalculateMaxTokens(model, text string) int { return GetModelContextSize(model) - CountTokens(model, text, text) } func main() { var prompt, model string // read the '.env' file err := godotenv.Load() if err != nil { log.Fatal("Error loading .env file") } ApiKey := os.Getenv("WATSONX_API_KEY") if ApiKey == "" { log.Fatal("WATSONX_API_KEY environment variable is not set") } ServiceURL := os.Getenv("SERVICE_URL") if ServiceURL == "" { log.Fatal("SERVICE_URL environment variable is not set") } ProjectID := os.Getenv("WATSONX_PROJECT_ID") if ProjectID == "" { log.Fatal("WATSONX_PROJECT_ID environment variable is not set") } // LLM from watsonx.ai model = "ibm/granite-13b-instruct-v2" // model = "meta-llama/llama-3-70b-instruct" llm, err := watsonx.New( model, //// Optional parameters: to be implemented if needed - Not used at this stage but all ready // wx.WithWatsonxAPIKey(ApiKey), // wx.WithWatsonxProjectID("YOUR WATSONX PROJECT ID"), ) if err != nil { log.Fatal(err) } ctx := context.Background() prompt = promptEntryDialog() // for the output visibility on the consol - getting rid of system messages ClearTerminal() // Use the entry variable here fmt.Println("Calling the llm with the user's prompt:", prompt) tokens = CountTokens(model, prompt, "input") completion, err := llms.GenerateFromSinglePrompt( ctx, llm, prompt, llms.WithTopK(10), llms.WithTopP(0.95), llms.WithSeed(25), ) // Check for errors if err != nil { log.Fatal(err) } fmt.Println(completion) tokens = CountTokens(model, completion, "output") }
Yang berfungsi dengan baik kerana output ditunjukkan di bawah.
Calling the llm with the user's prompt: What is the distance in Kilmometers from Earth to Moon? 2024/12/31 11:08:04 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the input text: 13 The distance from Earth to the Moon is about 384,400 kilometers. 2024/12/31 11:08:04 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the output text: 16 ##### Calling the llm with the user's prompt: What is the name of the capital city of France? 2024/12/31 11:39:28 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the input text: 11 Paris 2024/12/31 11:39:28 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the output text: 1
Voilà!
Langkah seterusnya
Saya akan melaksanakan ciri berikut untuk versi 0.2;
- Mencadangkan model yang ingin digunakan oleh pengguna,
- Cara yang lebih tepat untuk menentukan # token,
- Beberapa pelaksanaan LangChain sebenar.
Kesimpulan
Ini adalah gambaran yang sangat mudah tentang kerja saya semasa memanggil LangChain daripada aplikasi Go.
Nantikan lebih banyak lagi yang akan datang ?
Atas ialah kandungan terperinci Memanggil LangChain dari Go (Bahagian 1). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Pergi bahasa berfungsi dengan baik dalam membina sistem yang cekap dan berskala. Kelebihannya termasuk: 1. Prestasi Tinggi: Disusun ke dalam Kod Mesin, Kelajuan Berjalan Cepat; 2. Pengaturcaraan serentak: Memudahkan multitasking melalui goroutine dan saluran; 3. Kesederhanaan: sintaks ringkas, mengurangkan kos pembelajaran dan penyelenggaraan; 4. Cross-Platform: Menyokong kompilasi silang platform, penggunaan mudah.

Golang lebih baik daripada C dalam kesesuaian, manakala C lebih baik daripada Golang dalam kelajuan mentah. 1) Golang mencapai kesesuaian yang cekap melalui goroutine dan saluran, yang sesuai untuk mengendalikan sejumlah besar tugas serentak. 2) C Melalui pengoptimuman pengkompil dan perpustakaan standard, ia menyediakan prestasi tinggi yang dekat dengan perkakasan, sesuai untuk aplikasi yang memerlukan pengoptimuman yang melampau.

Golang dan Python masing -masing mempunyai kelebihan mereka sendiri: Golang sesuai untuk prestasi tinggi dan pengaturcaraan serentak, sementara Python sesuai untuk sains data dan pembangunan web. Golang terkenal dengan model keserasiannya dan prestasi yang cekap, sementara Python terkenal dengan sintaks ringkas dan ekosistem perpustakaan yang kaya.

Golang lebih baik daripada Python dari segi prestasi dan skalabiliti. 1) Ciri-ciri jenis kompilasi Golang dan model konkurensi yang cekap menjadikannya berfungsi dengan baik dalam senario konvensional yang tinggi. 2) Python, sebagai bahasa yang ditafsirkan, melaksanakan perlahan -lahan, tetapi dapat mengoptimumkan prestasi melalui alat seperti Cython.

Golang dan C masing-masing mempunyai kelebihan sendiri dalam pertandingan prestasi: 1) Golang sesuai untuk kesesuaian tinggi dan perkembangan pesat, dan 2) C menyediakan prestasi yang lebih tinggi dan kawalan halus. Pemilihan harus berdasarkan keperluan projek dan tumpukan teknologi pasukan.

Goimpactsdevelopmentpositivielythroughspeed, efficiency, andsimplicity.1) Speed: goCompilesquicklyandrunsefficiently, idealforlargeproject.2) Kecekapan: ITSComprehensivestandardlibraryraryrarexternaldependencies, enhingdevelyficiency.

C lebih sesuai untuk senario di mana kawalan langsung sumber perkakasan dan pengoptimuman prestasi tinggi diperlukan, sementara Golang lebih sesuai untuk senario di mana pembangunan pesat dan pemprosesan konkurensi tinggi diperlukan. Kelebihan 1.C terletak pada ciri-ciri perkakasan dan keupayaan pengoptimuman yang tinggi, yang sesuai untuk keperluan berprestasi tinggi seperti pembangunan permainan. 2. Kelebihan Golang terletak pada sintaks ringkas dan sokongan konvensional semulajadi, yang sesuai untuk pembangunan perkhidmatan konvensional yang tinggi.

Perbezaan prestasi antara Golang dan C terutamanya ditunjukkan dalam pengurusan ingatan, pengoptimuman kompilasi dan kecekapan runtime. 1) Mekanisme pengumpulan sampah Golang adalah mudah tetapi boleh menjejaskan prestasi, 2) Pengurusan memori manual C dan pengoptimuman pengkompil lebih cekap dalam pengkomputeran rekursif.
