mul dalam PyTorch

Patricia Arquette
Lepaskan: 2025-01-02 21:48:39
asal
323 orang telah melayarinya

mul in PyTorch

Beli Saya Kopi☕

*Memo:

  • Siaran saya menerangkan add().
  • Siaran saya menerangkan sub().
  • Siaran saya menerangkan div().
  • Siaran saya menerangkan baki().
  • Siaran saya menerangkan fmod().

mul() boleh melakukan pendaraban dengan dua daripada 0D atau lebih D tensor sifar atau lebih elemen atau skalar atau 0D atau lebih D tensor sifar atau lebih elemen dan skalar. mendapatkan tensor 0D atau lebih D bagi sifar atau lebih elemen seperti yang ditunjukkan di bawah:

*Memo:

  • mul() boleh digunakan dengan obor atau tensor.
  • Argumen(input) pertama dengan obor(Jenis:tensor atau skalar int, float, kompleks atau bool) atau menggunakan tensor(Jenis:tensor int, float, kompleks atau bool)(Diperlukan).
  • Argumen ke-2 dengan obor atau argumen pertama dengan tensor adalah lain(Jenis-Jenis:tensor atau skalar int, apungan, kompleks atau bool).
  • Terdapat hujah dengan obor(Pilihan-Lalai:Tiada-Jenis:tensor): *Memo:
    • out= mesti digunakan.
    • Siaran saya menerangkan hujah.
  • multiply() ialah alias mul().
import torch

tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])

torch.mul(input=tensor1, other=tensor2)
tensor1.mul(other=tensor2)
# tensor([[36, -28, 18], [-18, 35, -30]])

torch.mul(input=9, other=tensor2)
# tensor([[36, -36, 27], [-18, 45, -45]])

torch.mul(input=tensor1, other=4)
# tensor([36, 28, 24])

torch.mul(input=9, other=4)
# tensor(36)

tensor1 = torch.tensor([9., 7., 6.])
tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])

torch.mul(input=tensor1, other=tensor2)
# tensor([[36., -28., 18.], [-18., 35., -30.]])

torch.mul(input=9., other=tensor2)
# tensor([[36., -36., 27.], [-18., 45., -45.]])

torch.mul(input=tensor1, other=4.)
# tensor([36., 28., 24.])

torch.mul(input=9., other=4.)
# tensor(36.)

tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])
tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j],
                        [-2.+0.j, 5.+0.j, -5.+0.j]])
torch.mul(input=tensor1, other=tensor2)
# tensor([[36.+0.j, -28.+0.j, 18.+0.j],
#         [-18.+0.j, 35.+0.j, -30.+0.j]])

torch.mul(input=9.+0.j, other=tensor2)
# tensor([[36.+0.j, -36.+0.j, 27.+0.j],
#         [-18.+0.j, 45.+0.j, -45.+0.j]])

torch.mul(input=tensor1, other=4.+0.j)
# tensor([36.+0.j, 28.+0.j, 24.+0.j])

torch.mul(input=9.+0.j, other=4.+0.j)
# tensor(36.+0.j)

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])

torch.mul(input=tensor1, other=tensor2)
# tensor([[False, False, False],
#         [True, False, True]])

torch.mul(input=True, other=tensor2)
# tensor([[False, True, False], [True, False, True]])

torch.mul(input=tensor1, other=False)
# tensor([False, False, False])

torch.mul(input=True, other=False)
# tensor(False)
Salin selepas log masuk

Atas ialah kandungan terperinci mul dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

sumber:dev.to
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan