CocoDetection dalam PyTorch (1)
Beli Saya Kopi☕
*Siaran saya menerangkan MS COCO.
CocoDetection() boleh menggunakan dataset MS COCO seperti yang ditunjukkan di bawah:
*Memo:
- Argumen pertama ialah root(Required-Type:str or pathlib.Path):
*Memo:
- Ia adalah laluan ke imej.
- Laluan mutlak atau relatif boleh dilakukan.
- Argumen ke-2 ialah annFile(Required-Type:str or pathlib.Path):
*Memo:
- Ia adalah laluan ke anotasi.
- Laluan mutlak atau relatif boleh dilakukan.
- Argumen ke-3 ialah transform(Optional-Default:None-Type:callable).
- Argumen ke-4 ialah target_transform(Optional-Default:None-Type:callable).
- Argumen ke-5 ialah transforms(Optional-Default:None-Type:callable).
from torchvision.datasets import CocoDetection cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoDetection( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/test2014.json" ) test2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test2015.json" ) testdev2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoDetection # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x480>, # [{'image_id': 9, 'id': 661611, # 'caption': 'Closeup of bins of food that include broccoli and bread.'}, # {'image_id': 9, 'id': 661977, # 'caption': 'A meal is presented in brightly colored plastic trays.'}, # {'image_id': 9, 'id': 663627, # 'caption': 'there are containers filled with different kinds of foods'}, # {'image_id': 9, 'id': 666765, # 'caption': 'Colorful dishes holding meat, vegetables, fruit, and bread.'}, # {'image_id': 9, 'id': 667602, # 'caption': 'A bunch of trays that have different food.'}]) cap_train2014_data[1] # (<PIL.Image.Image image mode=RGB size=640x426>, # [{'image_id': 25, 'id': 122312, # 'caption': 'A giraffe eating food from the top of the tree.'}, # {'image_id': 25, 'id': 127076, # 'caption': 'A giraffe standing up nearby a tree '}, # {'image_id': 25, 'id': 127238, # 'caption': 'A giraffe mother with its baby in the forest.'}, # {'image_id': 25, 'id': 133058, # 'caption': 'Two giraffes standing in a tree filled area.'}, # {'image_id': 25, 'id': 133676, # 'caption': 'A giraffe standing next to a forest filled with trees.'}]) cap_train2014_data[2] # (<PIL.Image.Image image mode=RGB size=640x428>, # [{'image_id': 30, 'id': 695774, # 'caption': 'A flower vase is sitting on a porch stand.'}, # {'image_id': 30, 'id': 696557, # 'caption': 'White vase with different colored flowers sitting inside of it. '}, # {'image_id': 30, 'id': 699041, # 'caption': 'a white vase with many flowers on a stage'}, # {'image_id': 30, 'id': 701216, # 'caption': 'A white vase filled with different colored flowers.'}, # {'image_id': 30, 'id': 702428, # 'caption': 'A vase with red and white flowers outside on a sunny day.'}]) ins_train2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x480>, # [{'segmentation': [[500.49, 473.53, 599.73, ..., 20.49, 473.53]], # 'area': 120057.13925, 'iscrowd': 0, 'image_id': 9, # 'bbox': [1.08, 187.69, 611.59, 285.84], 'category_id': 51, # 'id': 1038967}, # {'segmentation': ..., 'category_id': 51, 'id': 1039564}, # ..., # {'segmentation': ..., 'category_id': 55, 'id': 1914001}]) ins_train2014_data[1] # (<PIL.Image.Image image mode=RGB size=640x426>, # [{'segmentation': [[437.52, 353.33, 437.87, ..., 437.87, 357.19]], # 'area': 19686.597949999996, 'iscrowd': 0, 'image_id': 25, # 'bbox': [385.53, 60.03, 214.97, 297.16], 'category_id': 25, # 'id': 598548}, # {'segmentation': [[99.26, 405.72, 133.57, ..., 97.77, 406.46]], # 'area': 2785.8475500000004, 'iscrowd': 0, 'image_id': 25, # 'bbox': [53.01, 356.49, 132.03, 55.19], 'category_id': 25, # 'id': 599491}]) ins_train2014_data[2] # (<PIL.Image.Image image mode=RGB size=640x428>, # [{'segmentation': [[267.38, 330.14, 281.81, ..., 269.3, 329.18]], # 'area': 47675.66289999999, 'iscrowd': 0, 'image_id': 30, # 'bbox': [204.86, 31.02, 254.88, 324.12], 'category_id': 64, # 'id': 291613}, # {'segmentation': [[394.34, 155.81, 403.96, ..., 393.38, 157.73]], # 'area': 16202.798250000003, 'iscrowd': 0, 'image_id': 30, # 'bbox': [237.56, 155.81, 166.4, 195.25], 'category_id': 86, # 'id': 1155486}]) pk_train2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x480>, []) pk_train2014_data[1] # (<PIL.Image.Image image mode=RGB size=640x426>, []) pk_train2014_data[2] # (<PIL.Image.Image image mode=RGB size=640x428>, []) cap_val2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x478>, # [{'image_id': 42, 'id': 641613, # 'caption': 'This wire metal rack holds several pairs of shoes and sandals'}, # {'image_id': 42, 'id': 645309, # 'caption': 'A dog sleeping on a show rack in the shoes.'}, # {'image_id': 42, 'id': 650217, # 'caption': 'Various slides and other footwear rest in a metal basket outdoors.'}, # {'image_id': 42, # 'id': 650868, # 'caption': 'A small dog is curled up on top of the shoes'}, # {'image_id': 42, # 'id': 652383, # 'caption': 'a shoe rack with some shoes and a dog sleeping on them'}]) cap_val2014_data[1] # (<PIL.Image.Image image mode=RGB size=565x640>, # [{'image_id': 73, 'id': 593422, # 'caption': 'A motorcycle parked in a parking space next to another motorcycle.'}, # {'image_id': 73, 'id': 746071, # 'caption': 'An old motorcycle parked beside other motorcycles with a brown leather seat.'}, # {'image_id': 73, 'id': 746170, # 'caption': 'Motorcycle parked in the parking lot of asphalt.'}, # {'image_id': 73, 'id': 746914, # 'caption': 'A close up view of a motorized bicycle, sitting in a rack. '}, # {'image_id': 73, 'id': 748185, # 'caption': 'The back tire of an old style motorcycle is resting in a metal stand. '}]) cap_val2014_data[2] # (<PIL.Image.Image image mode=RGB size=640x426>, # [{'image_id': 74, 'id': 145996, # 'caption': 'A picture of a dog laying on the ground.'}, # {'image_id': 74, 'id': 146710, # 'caption': 'Dog snoozing by a bike on the edge of a cobblestone street'}, # {'image_id': 74, 'id': 149398, # 'caption': 'The white dog lays next to the bicycle on the sidewalk.'}, # {'image_id': 74, 'id': 149638, # 'caption': 'a white dog is sleeping on a street and a bicycle'}, # {'image_id': 74, 'id': 150181, # 'caption': 'A puppy rests on the street next to a bicycle.'}]) ins_val2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x478>, # [{'segmentation': [[382.48, 268.63, 330.24, ..., 394.09, 264.76]], # 'area': 53481.5118, 'iscrowd': 0, 'image_id': 42, # 'bbox': [214.15, 41.29, 348.26, 243.78], 'category_id': 18, # 'id': 1817255}]) ins_val2014_data[1] # (<PIL.Image.Image image mode=RGB size=565x640>, # [{'segmentation': [[134.36, 145.55, 117.02, ..., 138.69, 141.22]], # 'area': 172022.43864999997, 'iscrowd': 0, 'image_id': 73, # 'bbox': [13.0, 22.75, 535.98, 609.67], 'category_id': 4, # 'id': 246920}, # {'segmentation': [[202.28, 4.97, 210.57, 26.53, ..., 192.33, 3.32]], # 'area': 52666.3402, 'iscrowd': 0, 'image_id': 73, # 'bbox': [1.66, 3.32, 268.6, 271.91], 'category_id': 4, # 'id': 2047387}]) ins_val2014_data[2] # (<PIL.Image.Image image mode=RGB size=640x426>, # [{'segmentation': [[321.02, 321.0, 314.25, ..., 320.57, 322.86]], # 'area': 18234.62355, 'iscrowd': 0, 'image_id': 74, # 'bbox': [61.87, 276.25, 296.42, 103.18], 'category_id': 18, # 'id': 1774}, # {'segmentation': ..., 'category_id': 2, 'id': 128367}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) pk_val2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x478>, []) pk_val2014_data[1] # (<PIL.Image.Image image mode=RGB size=565x640>, []) pk_val2014_data[2] # (<PIL.Image.Image image mode=RGB size=640x426>, # [{'segmentation': [[301.32, 93.96, 305.72, ..., 299.67, 94.51]], # 'num_keypoints': 0, 'area': 638.7158, 'iscrowd': 0, # 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 74, # 'bbox': [295.55, 93.96, 18.42, 58.83], 'category_id': 1, # 'id': 195946}, # {'segmentation': ..., 'category_id': 1, 'id': 253933}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) test2014_data[0] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2014_data[1] # (<PIL.Image.Image image mode=RGB size=480x640>, []) test2014_data[2] # (<PIL.Image.Image image mode=RGB size=480x640>, []) test2015_data[0] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2015_data[1] # (<PIL.Image.Image image mode=RGB size=480x640>, []) test2015_data[2] # (<PIL.Image.Image image mode=RGB size=480x640>, []) testdev2015_data[0] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[1] # (<PIL.Image.Image image mode=RGB size=480x640>, []) testdev2015_data[2] # (<PIL.Image.Image image mode=RGB size=640x427>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import torch def show_images(data, main_title=None): file = data.root.split('/')[-1] if data[0][1] and "caption" in data[0][1][0]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) x_axis = 0.02 x_axis_incr = 0.325 fs = 10.5 elif file == "val2014": plt.figure(figsize=(14, 6.5)) plt.suptitle(t=main_title, y=0.94, fontsize=14) x_axis = 0.01 x_axis_incr = 0.32 fs = 9.4 for i, (im, ann) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.title(label=ann[0]["image_id"]) y_axis = 0.0 for j in range(0, 5): plt.figtext(x=x_axis, y=y_axis, fontsize=fs, s=f'{ann[j]["id"]}:\n{ann[j]["caption"]}') if file == "train2014": y_axis -= 0.1 elif file == "val2014": y_axis -= 0.07 x_axis += x_axis_incr if i == 2 and file == "val2014": x_axis += 0.06 plt.tight_layout() plt.show() elif data[0][1] and "segmentation" in data[0][1][0]: if file == "train2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 4)) elif file == "val2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 5)) fig.suptitle(t=main_title, y=1.0, fontsize=14) for (im, anns), axis in zip(data, axes.ravel()): for ann in anns: for seg in ann['segmentation']: seg_tsors = torch.tensor(seg).split(2) seg_lists = [seg_tsor.tolist() for seg_tsor in seg_tsors] poly = Polygon(xy=seg_lists, facecolor="lightgreen", alpha=0.7) axis.add_patch(p=poly) px = [] py = [] for j, v in enumerate(seg): if j%2 == 0: px.append(v) else: py.append(v) axis.plot(px, py, color='yellow') x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none', zorder=2) axis.add_patch(p=rect) axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) fig.tight_layout() plt.show() elif not data[0][1]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) elif file == "val2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=1.05, fontsize=14) elif file == "test2014" or "test2015": plt.figure(figsize=(14, 8)) plt.suptitle(t=main_title, y=0.9, fontsize=14) for i, (im, _) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images(data=cap_train2014_data, main_title="cap_train2014_data") show_images(data=ins_train2014_data, main_title="ins_train2014_data") show_images(data=pk_train2014_data, main_title="pk_train2014_data") show_images(data=cap_val2014_data, main_title="cap_val2014_data") show_images(data=ins_val2014_data, main_title="ins_val2014_data") show_images(data=pk_val2014_data, main_title="pk_val2014_data") show_images(data=test2014_data, main_title="test2014_data") show_images(data=test2015_data, main_title="test2015_data") show_images(data=testdev2015_data, main_title="testdev2015_data")
Atas ialah kandungan terperinci CocoDetection dalam PyTorch (1). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.
