Rumah > pembangunan bahagian belakang > Tutorial Python > sekurang-kurangnya_dalam PyTorch

sekurang-kurangnya_dalam PyTorch

Barbara Streisand
Lepaskan: 2025-01-04 18:35:41
asal
308 orang telah melayarinya

atleast_in PyTorch

Beli Saya Kopi☕

*Memo:

  • Siaran saya menerangkan sekurang-kurangnya_2d().
  • Siaran saya menerangkan sekurang-kurangnya_3d().

sekurang-kurangnya_1d() boleh mendapatkan pandangan satu atau lebih tensor 1D atau lebih D sifar atau lebih elemen dengan hanya menukar satu atau lebih tensor 0D kepada satu atau lebih tensor 1D daripada satu atau lebih tensor 0D atau lebih D bagi sifar atau lebih elemen seperti yang ditunjukkan di bawah:

*Memo:

  • atleast_1d() boleh digunakan dengan obor tetapi tidak dengan tensor.
  • Argumen pertama atau lebih dengan obor ialah *tensor(Jenis Diperlukan:tensor int, float, kompleks atau bool atau tuple atau senarai tensor int, float, kompleks atau bool): *Memo:
    • Jika menetapkan lebih daripada satu tensor, satu tuple tensor dikembalikan sebaliknya tensor dikembalikan.
    • Jangan gunakan sebarang kata kunci seperti *tensor=, tensor atau input.
  • Menetapkan tiada argumen mengembalikan tupel kosong.
import torch

tensor0 = torch.tensor(2) # 0D tensor

torch.atleast_1d(tensor0)
# tensor([2])

tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor
tensor3 = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor
                        [[5, 0, 8], [3, 6, 1]]])
tensor4 = torch.tensor([[[[2, 7, 4], [8, 3, 2]], # 4D tensor
                         [[5, 0, 8], [3, 6, 1]]],
                        [[[9, 4, 7], [1, 0, 5]],
                         [[6, 7, 4], [2, 1, 9]]]])
torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4)
torch.atleast_1d((tensor0, tensor1, tensor2, tensor3, tensor4))
# (tensor([2]),
#  tensor([2, 7, 4]),
#  tensor([[2, 7, 4], [8, 3, 2]]),
#  tensor([[[2, 7, 4], [8, 3, 2]],
#          [[5, 0, 8], [3, 6, 1]]]),
#  tensor([[[[2, 7, 4], [8, 3, 2]],
#           [[5, 0, 8], [3, 6, 1]]],
#          [[[9, 4, 7], [1, 0, 5]],
#           [[6, 7, 4], [2, 1, 9]]]]))

tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2., 7., 4.], # 2D tensor
                        [8., 3., 2.]])
tensor3 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor
                         [8.+0.j, 3.+0.j, 2.+0.j]],
                        [[5.+0.j, 0.+0.j, 8.+0.j],
                         [3.+0.j, 6.+0.j, 1.+0.j]]])
tensor4 = torch.tensor([[[[True, False, True], [False, True, False]],
                         [[True, False, True], [False, True, False]]],
                        [[[True, False, True], [False, True, False]],
                         [[True, False, True], [False, True, False]]]])
                       # 4D tensor
torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4)
# (tensor([2]),
#  tensor([2, 7, 4]),
#  tensor([[2., 7., 4.],
#          [8., 3., 2.]]),
#  tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
#           [8.+0.j, 3.+0.j, 2.+0.j]],
#          [[5.+0.j, 0.+0.j, 8.+0.j],
#           [3.+0.j, 6.+0.j, 1.+0.j]]]),
#  tensor([[[[True, False, True], [False, True, False]],
#           [[True, False, True], [False, True, False]]],
#          [[[True, False, True], [False, True, False]],
#           [[True, False, True], [False, True, False]]]]))

torch.atleast_1d()
# ()
Salin selepas log masuk

Atas ialah kandungan terperinci sekurang-kurangnya_dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel terbaru oleh pengarang
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan