Rumah pembangunan bahagian belakang Tutorial Python Pengehosan LLM Buatan Sendiri dengan Sokongan Suara Dua Hala menggunakan Python, Transformers, Qwen dan Bark

Pengehosan LLM Buatan Sendiri dengan Sokongan Suara Dua Hala menggunakan Python, Transformers, Qwen dan Bark

Jan 08, 2025 pm 08:40 PM

Artikel ini memperincikan membina pelayan LLM tempatan yang didayakan suara dua hala menggunakan Python, perpustakaan Transformers, Qwen2-Audio-7B-Instruct dan Bark. Persediaan ini membenarkan interaksi suara yang diperibadikan.

Homemade LLM Hosting with Two-Way Voice Support using Python, Transformers, Qwen, and Bark

Prasyarat:

Sebelum bermula, pastikan anda mempunyai Python 3.9 , PyTorch, Transformers, Accelerate (dalam beberapa kes), FFmpeg & pydub (pemprosesan audio), FastAPI (pelayan web), Uvicorn (pelayan FastAPI), Bark (teks ke pertuturan) ), Multipart, dan SciPy dipasang. Pasang FFmpeg menggunakan apt install ffmpeg (Linux) atau brew install ffmpeg (macOS). Kebergantungan Python boleh dipasang melalui pip install torch transformers accelerate pydub fastapi uvicorn bark python-multipart scipy.

Langkah:

  1. Persediaan Persekitaran: Mulakan persekitaran Python anda dan pilih peranti PyTorch (CUDA untuk GPU, CPU sebaliknya atau MPS untuk Apple Silicon, walaupun sokongan MPS mungkin terhad).

    import torch
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    Salin selepas log masuk
    Salin selepas log masuk
  2. Pemuatan Model: Muatkan model dan pemproses Qwen2-Audio-7B-Instruct. Untuk kejadian GPU awan (Runpod, Vast), tetapkan HF_HOME dan XDG_CACHE_HOME pembolehubah persekitaran kepada storan volum anda sebelum muat turun model. Pertimbangkan untuk menggunakan enjin inferens yang lebih pantas seperti vLLM dalam pengeluaran.

    from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
    model_name = "Qwen/Qwen2-Audio-7B-Instruct"
    processor = AutoProcessor.from_pretrained(model_name)
    model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, device_map="auto").to(device)
    Salin selepas log masuk
  3. Memuatkan Model Bark: Muatkan model teks-ke-ucapan Bark. Alternatif wujud, tetapi pilihan proprietari mungkin lebih mahal.

    from bark import SAMPLE_RATE, generate_audio, preload_models
    preload_models()
    Salin selepas log masuk

    Penggunaan VRAM gabungan adalah lebih kurang 24GB; gunakan model Qwen terkuantisasi jika perlu.

  4. Persediaan Pelayan FastAPI: Cipta pelayan FastAPI dengan /voice dan /text titik akhir masing-masing untuk input audio dan teks.

    from fastapi import FastAPI, UploadFile, Form
    from fastapi.responses import StreamingResponse
    import uvicorn
    app = FastAPI()
    # ... (API endpoints defined later) ...
    if __name__ == "__main__":
        uvicorn.run(app, host="0.0.0.0", port=8000)
    Salin selepas log masuk
  5. Pemprosesan Input Audio: Gunakan FFmpeg dan pydub untuk memproses audio masuk ke dalam format yang sesuai untuk model Qwen. Fungsi audiosegment_to_float32_array dan load_audio_as_array mengendalikan penukaran ini.

  6. Penjanaan Respons Qwen: Fungsi generate_response mengambil perbualan (termasuk audio atau teks) dan menggunakan model Qwen untuk menjana respons teks. Ia mengendalikan kedua-dua input audio dan teks melalui templat sembang pemproses.

  7. Penukaran Teks ke Pertuturan: Fungsi text_to_speech menggunakan Bark untuk menukar teks yang dijana kepada fail audio WAV.

  8. Penyepaduan Titik Akhir API: Titik akhir /voice dan /text dilengkapkan untuk mengendalikan input, menjana respons menggunakan generate_response dan mengembalikan pertuturan yang disintesis menggunakan text_to_speech sebagai StreamingResponse.

  9. Ujian: Gunakan curl untuk menguji pelayan:

    import torch
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    Salin selepas log masuk
    Salin selepas log masuk

Kod Lengkap: (Kod lengkap terlalu panjang untuk disertakan di sini, tetapi ia tersedia dalam gesaan asal. Coretan kod di atas menunjukkan bahagian utama.)

Aplikasi: Persediaan ini boleh digunakan sebagai asas untuk chatbots, ejen telefon, automasi sokongan pelanggan dan pembantu undang-undang.

Respon yang disemak ini memberikan penjelasan yang lebih berstruktur dan ringkas, menjadikannya lebih mudah untuk difahami dan dilaksanakan. Coretan kod lebih tertumpu pada aspek penting, sambil mengekalkan integriti maklumat asal.

Atas ialah kandungan terperinci Pengehosan LLM Buatan Sendiri dengan Sokongan Suara Dua Hala menggunakan Python, Transformers, Qwen dan Bark. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Apr 01, 2025 pm 05:09 PM

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Apr 01, 2025 pm 11:15 PM

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Apr 01, 2025 pm 10:51 PM

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana untuk mendapatkan data berita yang melangkaui mekanisme anti-crawler Investing.com? Bagaimana untuk mendapatkan data berita yang melangkaui mekanisme anti-crawler Investing.com? Apr 02, 2025 am 07:03 AM

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...

See all articles