Mencari Lubang dalam Set Titik 2D
Tugasnya ialah mencari lubang dalam set titik 2D dalam sistem grid kartesian. Titik mewakili lokasi sampel tanah, dan lubang boleh termasuk batu gergasi, tempat berpaya atau tasik/kolam. Matlamatnya adalah untuk mencari poligon cekung yang mentakrifkan secara kasar kawasan ini, melaraskan kepekaan algoritma untuk mengawal kekasaran atau kelancaran poligon.
Penyelesaian Pendekatan
Langkah:
Contoh Pelaksanaan (C#):
using System; using System.Collections.Generic; public class Holes { // Density map (2D array) private int[][] map; // List of hole segments (lines) private List<Line> segments; // Polygonized holes (concave polygons) private List<Polygon> holes; // Polygonization tolerance (higher value = smoother polygons) private double tolerance; // Initializes the hole detection algorithm. public Holes(int[][] points, int mapSize, double tolerance) { if (points == null || mapSize <= 0 || tolerance <= 0) { throw new ArgumentException("Invalid arguments"); } // Initialize the variables this.map = new int[mapSize][mapSize]; this.tolerance = tolerance; this.segments = new List<Line>(); this.holes = new List<Polygon>(); // Create density map CreateDensityMap(points, mapSize); } // Identifies holes in the density map. public void FindHoles() { if (map == null || map.Length == 0) { throw new InvalidOperationException("Density map not initialized."); } // Find hole cells List<Cell> holeCells = FindCells(0); // Group hole cells into segments List<List<Line>> lineGroups = GroupLines(holeCells); // Polygonize segments PolygonizeSegments(lineGroups); } // Helper functions for hole detection. private void CreateDensityMap(int[][] points, int mapSize) { // Scale and project points onto a grid for (int i = 0; i < points.Length; i++) { double scaledX = points[i][0] / points[0][0] * mapSize; double scaledY = points[i][1] / points[0][1] * mapSize; int x = (int)scaledX; int y = (int)scaledY; // Increment count in density map map[x][y]++; } } private List<Cell> FindCells(int threshold) { List<Cell> holeCells = new List<Cell>(); for (int i = 0; i < map.Length; i++) { for (int j = 0; j < map[i].Length; j++) { if (map[i][j] == 0 || map[i][j] <= threshold) { holeCells.Add(new Cell(i, j)); } } } return holeCells; } private List<List<Line>> GroupLines(List<Cell> holeCells) { // Group lines by proximity List<List<Line>> lineGroups = new List<List<Line>>(); foreach (Cell holeCell in holeCells) { List<Line> group = null; // Find existing group or create a new one for (int i = 0; i < lineGroups.Count; i++) { if (lineGroups[i].Find(line => line.Proximity(holeCell) <= tolerance) != null) { group = lineGroups[i]; break; } } if (group == null) { group = new List<Line>(); lineGroups.Add(group); } // Add horizontal/vertical lines group.Add(new Line(holeCell.x, holeCell.y, true)); group.Add(new Line(holeCell.x, holeCell.y, false)); } return lineGroups; } private void PolygonizeSegments(List<List<Line>> lineGroups) { foreach (List<Line> lineGroup in lineGroups) { Polygon polygon = PolygonizeSegment(lineGroup); if (polygon != null) { holes.Add(polygon); } } } private Polygon PolygonizeSegment(List<Line> lineSegment) { // Sort lines by angle (convex hull algorithm) lineSegment.Sort((a, b) => a.Angle.CompareTo(b.Angle)); // Remove duplicate lines List<Line> uniqueLines = new List<Line>(); foreach (Line line in lineSegment) { if (uniqueLines.Count == 0 || uniqueLines[uniqueLines.Count - 1].Angle != line.Angle) { uniqueLines.Add(line); } } // Polygonize lines List<Point> points = new List<Point>(); for (int i = 0; i < uniqueLines.Count; i++) { Point point = null; Line currentLine = uniqueLines[i]; if (uniqueLines[(i + 1) % uniqueLines.Count].Angle - currentLine.Angle > Math.PI) { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], true); } else { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], false); } if (point != null) { points.Add(point); } } return new Polygon(points); } // Helper classes for line/polygon representation. private class Line { public int x1, y1, x2, y2; public double angle; public bool isHorizontal; public Line(int x, int y, bool isHorizontal) { if (isHorizontal) { x1 = 0; y1 = y; x2 = map.GetLength(0) - 1; y2 = y; } else { x1 = x; y1 = 0; x2 = x; y2 = map[0].GetLength(0) - 1; } this.angle = Math.Atan2(y2 - y1, x2 - x1); this.isHorizontal = isHorizontal; } public double Angle { get { return angle; } } public double Proximity(Cell cell) { double distX, distY; if (isHorizontal) { distX = cell.x - x1; distY = cell.y - y1; } else { distX = cell.x - x2; distY = cell.y - y2; } return Math.Sqrt(distX * distX + distY * distY); } public Point GetIntersection(Line other, bool isConvex) { double denominator, numerator, tx, ty; if (isHorizontal) { denominator = (other.y2 - other.y1) - (y2 - y1); numerator = ((other.x2 - other.x1) * (y1 - other.y1)) - ((x2 - x1) * (other.y2 - other.y1)); tx = numerator / denominator; ty = other.y1 + ((tx - other.x1) * (other.y2 - other.y1)) / (other.x2 - other.x1); } else { denominator = (other.x2 - other.x1) - (x2 - x1);
Atas ialah kandungan terperinci Bagaimanakah kita boleh mengenal pasti dan menggambarkan lubang dalam set titik 2D yang mewakili lokasi sampel tanah?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!