Apa yang akan anda pelajari:
Struktur Projek:
<code>rag-project/ │ ├── src/ │ ├── __init__.py │ ├── document_loader.py │ ├── text_processor.py │ ├── embeddings_manager.py │ ├── retrieval_system.py │ └── rag_system.py │ ├── data/ │ └── documents/ │ ├── requirements.txt ├── test.py ├── README.md └── .env</code>
Langkah 1: Persediaan Alam Sekitar:
python -m venv venv
venvScriptsactivate
mengaktifkannya: source venv/bin/activate
Pasang pakej: pip install openai python-dotenv numpy pandas
Buat requirements.txt
<code>openai==1.12.0 python-dotenv==1.0.0 numpy==1.24.3 pandas==2.1.0</code>
.env
<code>OPENAI_API_KEY=your_api_key_here</code>
src/document_loader.py
<code class="language-python">import os from typing import List class DocumentLoader: def __init__(self, documents_path: str): self.documents_path = documents_path def load_documents(self) -> List[str]: documents = [] for filename in os.listdir(self.documents_path): if filename.endswith('.txt'): with open(os.path.join(self.documents_path, filename), 'r') as file: documents.append(file.read()) return documents</code>
src/text_processor.py
Langkah 4: Penciptaan Embeddings (
<code class="language-python">from typing import List class TextProcessor: def __init__(self, chunk_size: int = 1000): self.chunk_size = chunk_size def split_into_chunks(self, text: str) -> List[str]: words = text.split() chunks = [] current_chunk = [] current_size = 0 for word in words: if current_size + len(word) > self.chunk_size: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_size = len(word) else: current_chunk.append(word) current_size += len(word) + 1 if current_chunk: chunks.append(' '.join(current_chunk)) return chunks</code>
src/embeddings_manager.py
Langkah 5: Sistem pengambilan semula (
<code class="language-python">from typing import List import openai import numpy as np class EmbeddingsManager: def __init__(self, api_key: str): openai.api_key = api_key def create_embeddings(self, texts: List[str]) -> List[np.ndarray]: embeddings = [] for text in texts: response = openai.embeddings.create( model="text-embedding-ada-002", input=text ) embeddings.append(np.array(response.data[0].embedding)) return embeddings</code>
src/retrieval_system.py
Langkah 6: Integrasi Openai (
<code class="language-python">import numpy as np from typing import List, Tuple class RetrievalSystem: def __init__(self, chunks: List[str], embeddings: List[np.ndarray]): self.chunks = chunks self.embeddings = embeddings def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]: similarities = [] for i, embedding in enumerate(self.embeddings): similarity = np.dot(query_embedding, embedding) / ( np.linalg.norm(query_embedding) * np.linalg.norm(embedding) ) similarities.append((self.chunks[i], similarity)) return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]</code>
Langkah 7: Penggunaan Sistem (src/rag_system.py
<code class="language-python">import os from dotenv import load_dotenv from typing import List import openai from .document_loader import DocumentLoader from .text_processor import TextProcessor from .embeddings_manager import EmbeddingsManager from .retrieval_system import RetrievalSystem class RAGSystem: def __init__(self): load_dotenv() self.api_key = os.getenv('OPENAI_API_KEY') self.loader = DocumentLoader('data/documents') self.processor = TextProcessor() self.embeddings_manager = EmbeddingsManager(self.api_key) # Initialize system self.initialize_system() def initialize_system(self): # Load and process documents documents = self.loader.load_documents() self.chunks = [] for doc in documents: self.chunks.extend(self.processor.split_into_chunks(doc)) # Create embeddings self.embeddings = self.embeddings_manager.create_embeddings(self.chunks) # Initialize retrieval system self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings) def answer_question(self, question: str) -> str: # Get question embedding question_embedding = self.embeddings_manager.create_embeddings([question])[0] # Get relevant chunks relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding) # Prepare context context = "\n".join([chunk[0] for chunk in relevant_chunks]) # Create prompt prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:""" # Get response from OpenAI response = openai.chat.completions.create( model="gpt-4-turbo-preview", messages=[ {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content</code>
. Kemudian, jalan : test.py
Kesimpulan: .txt
data/documents
test.py
Ini menyediakan sistem RAG asas. Penambahbaikan masa depan boleh merangkumi peningkatan yang dipertingkatkan, menyemai caching, pengendalian ralat, kejuruteraan cepat, dan integrasi pangkalan data vektor. Ingatlah untuk menguruskan kunci API OpenAI anda dengan selamat dan memantau penggunaan.
Atas ialah kandungan terperinci Membina sistem kain pertama anda dengan Python dan Openai. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!