Jadual Kandungan
Buka lembaran kerja tertentu
Dapatkan data sel
Buat fail baru
Tambah Lembaran Kerja
lebih banyak pilihan apabila menyimpan spreadsheet
Rumah pembangunan bahagian belakang Tutorial Python Menggunakan Python untuk menghuraikan data spreadsheet

Menggunakan Python untuk menghuraikan data spreadsheet

Feb 20, 2025 am 09:46 AM

Pemprosesan data spreadsheet yang biasa dalam organisasi besar dan perusahaan dan mengimportnya ke dalam aplikasi web adalah satu cabaran bagi banyak pemaju. Artikel ini akan meneroka cara untuk memproses dan menghuraikan data tersebut menggunakan Python, termasuk membaca dan menulis ke XLSX, CSV, dan versi spreadsheet yang lebih lama.

Mata utama:

  • Python menggabungkan perpustakaan seperti panda dan openpyxl untuk mudah menghuraikan data spreadsheet, termasuk membaca dan menulis fail XLSX, fail CSV, dan spreadsheet warisan. Ini menjadikannya mudah untuk memanipulasi dan menganalisis data yang disimpan dalam format ini.
  • Proses membaca spreadsheet termasuk mengimport modul Pandas, membuka fail spreadsheet, memilih lembaran kerja tertentu, dan mengekstrak nilai sel data tertentu. Pandas membaca spreadsheet sebagai jadual dan menyimpannya sebagai bingkai data, yang kemudiannya boleh menanyakan bingkai data untuk mengekstrak data tertentu.
  • Proses membuat spreadsheet adalah serupa dengan membuat bingkai data dan menyimpannya ke buku kerja, kemudian membuat lembaran kerja di dalam buku kerja dan menambah data ke sel -sel dalam buku kerja. Kelas Excelwriter di Pandas menyediakan lebih banyak pilihan untuk menyimpan data ke spreadsheet, termasuk membekalkan bingkai data ke spreadsheet sedia ada dan penetapan tarikh dan nilai masa.

Asas Spreadsheets:

Fail spreadsheet adalah koleksi pelbagai lembaran kerja, setiap lembaran kerja adalah koleksi sel data yang diatur dalam grid, sama dengan jadual. Dalam lembaran kerja, sel data dikenalpasti oleh nombor baris dan nombor lajurnya.

Using Python to Parse Spreadsheet Data

Sebagai contoh, dalam imej di atas, spreadsheet mengandungi hanya satu lembaran kerja "Sheet1". Sel "2a" sepadan dengan baris kedua dan lajur pertama. Nilai sel 2a ialah 1. Walaupun program dengan GUI memberikan huruf kepada nama lajur, apabila kita menghuraikan data, kita mulakan dengan nombor baris dan nombor lajur dari 0. Ini bermakna bahawa sel 2a akan sesuai dengan (1, 0), 4b akan sesuai dengan (1, 3), 3c akan sesuai dengan (2, 2), dan sebagainya.

Tetapan Alam Sekitar Python:

Kami akan menggunakan Python 3 untuk membaca dan menulis kepada spreadsheet. Untuk membaca dan menulis fail XLSX, anda perlu memasang modul PANDAS. Anda boleh menggunakan pemasang python seperti pip atau easy_install untuk dipasang. Pandas menggunakan modul OpenPyxl untuk membaca fail spreadsheet baru (.xlsx) dan menggunakan modul XLRD untuk membaca spreadsheet lama (.xls file). Apabila panda dipasang, kedua -dua modul (OpenPyxl dan XLRD) akan dipasang sebagai kebergantungan:

pip3 install pandas
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk
Untuk membaca dan menulis fail CSV, modul CSV diperlukan, yang dipasang di Python. Fail CSV juga boleh dibaca melalui panda.

Baca spreadsheet:

Jika anda ingin menghuraikan data dalam fail, anda perlu melaksanakan operasi berikut dalam urutan berikut:

    Import modul pandas
  1. Buka fail spreadsheet (atau buku kerja)
  2. Pilih Lembaran Kerja
  3. Ekstrak nilai sel data tertentu
Buka fail spreadsheet

Pertama, mari kita buka fail di Python. Contoh spreadsheet berikut (disediakan oleh Container Learning):

pip3 install pandas
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Pandas membaca spreadsheet sebagai meja dan menyimpannya sebagai DataFrame Pandas.

Jika fail mengandungi aksara bukan ascii, ia harus dibuka dalam format unicode:

import pandas as pd
workbook = pd.read_excel('sample-xlsx-file-for-testing.xlsx')
workbook.head()
Salin selepas log masuk
Salin selepas log masuk

Jika spreadsheet sangat besar, anda boleh menambah parameter use_cols, yang hanya memuat lajur tertentu ke dalam bingkai data. Sebagai contoh, parameter berikut hanya akan membaca lima lajur pertama:

import sys
workbook = pd.read_excel('sample-xlsx-file-for-testing.xlsx', encoding=sys.getfilesystemencoding())
Salin selepas log masuk
Salin selepas log masuk

Di samping itu, anda boleh menggunakan parameter nrows dan skiprows untuk hanya membaca sejumlah baris, atau mengabaikan sejumlah baris tertentu pada mulanya.

Buka lembaran kerja tertentu

Anda boleh menggunakan parameter sheet_name untuk memilih lembaran kerja tertentu dari spreadsheet. Secara lalai, fungsi read_excel() mengasingkan lembaran kerja pertama dalam fail. Nama lembaran kerja boleh disediakan sebagai rentetan, atau indeks lembaran kerja (bermula dari 0):

workbook = pd.read_excel('~/Desktop/import-export-data.xlsx', usecols = 'A:E')
workbook.head()
Salin selepas log masuk
Salin selepas log masuk

Pelbagai lembaran kerja juga boleh dipilih sebagai penyimpanan kamus untuk bingkai data panda dengan lulus senarai ke sheet_name parameter:

# 读取名为'Sheet1'的工作表
worksheet = pd.read_excel('sample-xlsx-file-for-testing.xlsx', sheet_name = 'Sheet1')

# 读取文件中的第一个工作表
worksheet = pd.read_excel('sample-xlsx-file-for-testing.xlsx', sheet_name = 0)
Salin selepas log masuk

Dapatkan data sel

Setelah memilih lembaran kerja ke bingkai data, anda boleh mengekstrak nilai sel data tertentu dengan menanyakan bingkai data Pandas:

# 读取前两个工作表和名为'Sheet 3'的工作表
worksheets = pd.read_excel('~/Desktop/import-export-data.xlsx', sheet_name = [0, 1, 'Sheet 3'])
Salin selepas log masuk
Kaedah

.iloc() membantu mencari nilai berdasarkan kedudukan indeks. Dalam kod di atas, .iloc() cari nilai kedudukan indeks ke -0. Begitu juga, kaedah .loc() boleh digunakan untuk mencari nilai menggunakan tag. Sebagai contoh, jika anda lulus parameter 0 ke kaedah .loc(), ia akan mencari tag 0 dalam indeks:

import pandas as pd
workbook = pd.read_excel('sample-xlsx-file-for-testing.xlsx')

# 打印'Product'列的第一个值
print(workbook['Product'].iloc[0])

=> Carretera
Salin selepas log masuk

Selepas memuatkan dataset ke dalam data data, anda boleh menanyakan dataset menggunakan fungsi terbina dalam dalam panda.

Buat spreadsheet:

Proses membuat lembaran kerja adalah serupa dengan bahagian sebelumnya.

  1. Import modul pandas
  2. simpan data ke buku kerja
  3. Buat lembaran kerja dalam buku kerja
  4. tambah gaya ke sel dalam buku kerja

Buat fail baru

Untuk membuat fail baru, anda terlebih dahulu memerlukan bingkai data. Mari kita buat semula jadual demo pada permulaan artikel:

print(workbook['Product'].loc[0])

=> Carretera
Salin selepas log masuk

Anda kemudian boleh membuat fail spreadsheet baru dengan memanggil fungsi to_excel() ke bingkai data dan tentukan nama fail yang harus disimpan:

import pandas as pd

name = ['John', 'Mary', 'Sherlock']
age = [11, 12, 13]
df = pd.DataFrame({ 'Name': name, 'Age': age })
df.index.name = 'ID'
Salin selepas log masuk

juga boleh menggunakan fungsi read_excel() untuk membuka fail yang sama.

Tambah Lembaran Kerja

Bingkai data boleh disimpan sebagai lembaran kerja tertentu dalam buku kerja menggunakan parameter sheet_name. Nilai lalai parameter ini ialah Sheet1:

df.to_excel('my_file.xlsx')
Salin selepas log masuk

lebih banyak pilihan apabila menyimpan spreadsheet

Kelas

tersedia untuk lebih banyak pilihan apabila menyimpan ke spreadsheet. Jika anda ingin menyimpan pelbagai bingkai data ke fail yang sama, anda boleh menggunakan sintaks berikut: ExcelWriter

df.to_excel('my_file.xlsx', sheet_name = 'My Sheet')
Salin selepas log masuk
Untuk menambah bingkai data ke spreadsheet yang sedia ada, gunakan parameter

. Sila ambil perhatian bahawa mod tambahan hanya disokong apabila enjin ditentukan sebagai OpenPyxl: mode

import pandas as pd

workbook = pd.read_excel('my_file.xlsx')

# 创建workbook的副本
workbook_2 = workbook.copy()

with pd.ExcelWriter('my_file_1.xlsx') as writer:
    workbook.to_excel(writer, sheet_name='Sheet1')
    workbook_2.to_excel(writer, sheet_name='Sheet2')
Salin selepas log masuk
Di samping itu, gunakan

dan date_format untuk menetapkan nilai tarikh dan masa: datetime_format

pip3 install pandas
Salin selepas log masuk
Salin selepas log masuk
Salin selepas log masuk

Baca versi lama (.xls) Spreadsheet:

spreadsheet lama dengan lanjutan .xls boleh dibaca menggunakan sintaks yang sama dalam panda:

import pandas as pd
workbook = pd.read_excel('sample-xlsx-file-for-testing.xlsx')
workbook.head()
Salin selepas log masuk
Salin selepas log masuk

Walaupun fungsi read_excel() yang sama digunakan, Pandas menggunakan enjin XLRD untuk membacanya. Anda boleh membaca dan menulis kepada spreadsheet lama menggunakan sintaks yang sama yang dibincangkan dalam tutorial ini sebelum ini.

Penerangan ringkas fail CSV:

CSV bermaksud "nilai yang dipisahkan koma" (kadang-kadang dipanggil nilai yang dipisahkan karakter jika pembatas yang digunakan bukan koma), dan namanya jelas. Fail CSV biasa kelihatan seperti ini:

import sys
workbook = pd.read_excel('sample-xlsx-file-for-testing.xlsx', encoding=sys.getfilesystemencoding())
Salin selepas log masuk
Salin selepas log masuk

Spreadsheet boleh ditukar kepada fail CSV untuk memudahkan parsing. Sebagai tambahan kepada panda, anda juga boleh menghuraikan fail CSV dengan mudah menggunakan modul CSV di Python:

workbook = pd.read_excel('~/Desktop/import-export-data.xlsx', usecols = 'A:E')
workbook.head()
Salin selepas log masuk
Salin selepas log masuk

Kesimpulan:

Membuat dan menghuraikan spreadsheet tidak dapat dielakkan apabila bekerja dengan aplikasi web yang besar. Oleh itu, yang biasa dengan perpustakaan parsing hanya boleh membantu jika diperlukan.

FAQ:

  • Bolehkah Python Parse Excel? Ya, Python boleh menghuraikan fail Excel menggunakan perpustakaan seperti panda dan openpyxl.
  • Apakah perpustakaan Python yang digunakan untuk menghuraikan fail Excel? Dua perpustakaan yang biasa digunakan adalah pandas dan openpyxl.
  • Bagaimana untuk mengekstrak data dari Excel menggunakan Python? anda boleh menggunakan fungsi pandas.read_excel() untuk membaca fail Excel.
  • Bolehkah saya menghuraikan fail CSV menggunakan python? Pandas juga boleh menghuraikan fail CSV. Fail CSV boleh dibaca menggunakan fungsi pandas.read_csv().
  • Bagaimana menggunakan panda untuk menapis dan memanipulasi data selepas parsing? Anda boleh menggunakan fungsi manipulasi data Pandas (seperti LOC, ILOC, dan Query) untuk menapis, memilih dan mengubah suai data mengikut pelbagai syarat.
  • Bagaimana untuk memasang panda perpustakaan yang diperlukan dan openpyxl? Anda boleh menggunakan PIP (Pengurus Pakej Python) untuk memasang Pandas dan OpenPyxl. Jalankan arahan pip install pandas dan pip install openpyxl.

Respons yang disemak ini mengekalkan makna asal semasa menyusun semula ayat-ayat dan menggunakan sinonim untuk mencapai pseudo-asal.

Atas ialah kandungan terperinci Menggunakan Python untuk menghuraikan data spreadsheet. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1666
14
Tutorial PHP
1273
29
Tutorial C#
1253
24
Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

See all articles