Jadual Kandungan
Matlamat kami adalah untuk membuat aplikasi pembelajaran mesin yang meramalkan kelayakan penempatan pekerjaan pelajar menggunakan dataset ramalan penempatan. Kami akan membimbing o3-mini melalui setiap peringkat di Chatgpt.
Rumah Peranti teknologi AI Tutorial Openai O3-Mini: Membina Projek Pembelajaran Mesin dengan O3-Mini

Tutorial Openai O3-Mini: Membina Projek Pembelajaran Mesin dengan O3-Mini

Feb 28, 2025 pm 03:35 PM

Openai's O3-Mini: Model penalaran yang kuat untuk tugas teknikal

OpenAI telah mengeluarkan O3-Mini, model penalaran canggih yang direka untuk kelajuan, kecekapan, dan prestasi unggul dalam pengekodan, batang, dan penyelesaian masalah logik. Tidak seperti pendahulunya, O1, O3-Mini menawarkan jejak yang lebih kecil dan aksesibiliti yang dipertingkatkan, yang tersedia secara bebas untuk semua pengguna di pelbagai platform, termasuk CHATGPT. Untuk menyelam lebih mendalam ke dalam ciri dan perbandingan O3-mini dengan O1, berunding dengan catatan blog rasmi OpenAI.

OpenAI o3-mini Model

Sumber: Chatgpt

Tutorial ini menunjukkan keupayaan O3-mini dengan membina aplikasi pembelajaran mesin dari awal, memanfaatkan kehebatannya dalam tugas teknikal yang kompleks, penjanaan kod, dan peruntukan arahan yang jelas. Kami akan menilai keupayaannya untuk mengendalikan aliran kerja pembelajaran mesin yang lengkap, dari bangunan dan ujian untuk penempatan.

Project Workflow

imej oleh pengarang

Membina aplikasi Ramalan Penempatan Pelajar dengan O3-Mini

Matlamat kami adalah untuk membuat aplikasi pembelajaran mesin yang meramalkan kelayakan penempatan pekerjaan pelajar menggunakan dataset ramalan penempatan. Kami akan membimbing o3-mini melalui setiap peringkat di Chatgpt.

1. Persediaan Projek

Kami akan menyediakan O3-Mini dengan butiran dataset dan spesifikasi projek, meminta penciptaan fail dan folder yang diperlukan menggunakan arahan bash. Dataset ini termasuk: Pelajar, CGPA, latihan, projek, bengkel/pensijilan, AptitudeTestScore, SoftSkillrating, ExtracurricularActivities, PlacementTraining, SSC dan HSC, dan PlacementStatus (pembolehubah sasaran).

Prompt mengarahkan O3-Mini untuk menghasilkan struktur projek yang merangkumi analisis data, bangunan model, penjejakan eksperimen (menggunakan MLFlow), latihan model (dengan penalaan hiperparameter), aplikasi kesimpulan model (mis. Pemberian hasil yang dijangkakan termasuk struktur folder, skrip python, cadangan alat/perpustakaan, panduan persediaan MLFlow, dan langkah penempatan.

skrip bash yang dihasilkan untuk persediaan projek ialah:

skrip ini berjaya mewujudkan struktur projek yang diperlukan.

mkdir -p student_placement_project/{data,notebooks,src,app/templates}
touch student_placement_project/data/dataset.csv 
      student_placement_project/notebooks/eda.ipynb 
      student_placement_project/src/{__init__.py,data_preprocessing.py,model_training.py,model_inference.py,utils.py} 
      student_placement_project/app/{app.py,requirements.txt} 
      student_placement_project/app/templates/index.html 
      student_placement_project/{Dockerfile,requirements.txt,README.md}
Salin selepas log masuk

Bahagian berikutnya (analisis data, pra-proses data, latihan model, pengesanan eksperimen, penalaan hiperparameter, aplikasi kesimpulan model, dockerfile, dan penempatan awan) terperinci kod yang dihasilkan oleh O3-Mini untuk setiap langkah dan hasil yang diperolehi. (Nota: Oleh kerana kekangan panjang, coretan kod terperinci untuk setiap langkah ditinggalkan di sini, tetapi tindak balas asal termasuk mereka.)

Aplikasi akhir yang digunakan untuk memeluk ruang muka ditunjukkan di bawah:

Hugging Face Deployment

Sumber: Penempatan Pelajar

Petua untuk Kejuruteraan Prompt O3-Mini yang berkesan

  • Elakkan arahan yang bercanggah: mengutamakan kejelasan dan konsistensi. Arahan yang paling terkini diutamakan.
  • Debugging manual: Bersedia untuk menyelesaikan beberapa isu kod secara manual. Pengubahsuaian O3-Mini mungkin memperkenalkan akibat yang tidak diingini.
  • Konteks Komprehensif: Sediakan semua data dan butiran yang berkaitan untuk hasil yang tepat.
  • Nyatakan Deliverables: jelas menyatakan output yang dikehendaki (folder, fail, kod, arahan).
  • Prompt asas yang kuat: Mulakan dengan prompt asas yang komprehensif, kemudian siapkan dengan arahan susulan.
Kesimpulan

O3-Mini melepasi GPT-4O dan O1 dalam kelajuan dan keupayaan penjanaan kod Python/HTML. Kod python yang dihasilkan secara amnya berjalan lancar, dan ia secara berkesan meningkatkan HTML untuk antara muka pengguna yang lebih baik. Tutorial ini mempamerkan nilai O3-Mini untuk saintis data dan profesional teknikal, memudahkan aliran kerja pembelajaran mesin kompleks. Ingatlah untuk memberikan konteks dan hasil lengkap dalam prompt awal anda untuk hasil yang optimum. Pertimbangkan untuk belajar bagaimana untuk menggunakan LLM anda sendiri menggunakan alat seperti BentoML untuk kawalan yang lebih besar ke atas aplikasi AI anda.

Atas ialah kandungan terperinci Tutorial Openai O3-Mini: Membina Projek Pembelajaran Mesin dengan O3-Mini. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1655
14
Tutorial PHP
1253
29
Tutorial C#
1227
24
Bermula dengan Meta Llama 3.2 - Analytics Vidhya Bermula dengan Meta Llama 3.2 - Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta's Llama 3.2: Lompat ke hadapan dalam Multimodal dan Mobile AI META baru -baru ini melancarkan Llama 3.2, kemajuan yang ketara dalam AI yang memaparkan keupayaan penglihatan yang kuat dan model teks ringan yang dioptimumkan untuk peranti mudah alih. Membina kejayaan o

10 Pelanjutan pengekodan AI generatif dalam kod vs yang mesti anda pelajari 10 Pelanjutan pengekodan AI generatif dalam kod vs yang mesti anda pelajari Apr 13, 2025 am 01:14 AM

Hei ada, pengekodan ninja! Apa tugas yang berkaitan dengan pengekodan yang anda telah merancang untuk hari itu? Sebelum anda menyelam lebih jauh ke dalam blog ini, saya ingin anda memikirkan semua kesengsaraan yang berkaitan dengan pengekodan anda-lebih jauh menyenaraikan mereka. Selesai? - Let &#8217

AV Bytes: Meta ' s llama 3.2, Google's Gemini 1.5, dan banyak lagi AV Bytes: Meta ' s llama 3.2, Google's Gemini 1.5, dan banyak lagi Apr 11, 2025 pm 12:01 PM

Landskap AI minggu ini: Badai kemajuan, pertimbangan etika, dan perdebatan pengawalseliaan. Pemain utama seperti Openai, Google, Meta, dan Microsoft telah melepaskan kemas kini, dari model baru yang terobosan ke peralihan penting di LE

Menjual Strategi AI kepada Pekerja: Manifesto CEO Shopify Menjual Strategi AI kepada Pekerja: Manifesto CEO Shopify Apr 10, 2025 am 11:19 AM

Memo CEO Shopify Tobi Lütke baru -baru ini dengan berani mengisytiharkan penguasaan AI sebagai harapan asas bagi setiap pekerja, menandakan peralihan budaya yang signifikan dalam syarikat. Ini bukan trend seketika; Ini adalah paradigma operasi baru yang disatukan ke p

Panduan Komprehensif untuk Model Bahasa Visi (VLMS) Panduan Komprehensif untuk Model Bahasa Visi (VLMS) Apr 12, 2025 am 11:58 AM

Pengenalan Bayangkan berjalan melalui galeri seni, dikelilingi oleh lukisan dan patung yang terang. Sekarang, bagaimana jika anda boleh bertanya setiap soalan dan mendapatkan jawapan yang bermakna? Anda mungkin bertanya, "Kisah apa yang anda ceritakan?

GPT-4O vs OpenAI O1: Adakah model Openai baru bernilai gembar-gembur? GPT-4O vs OpenAI O1: Adakah model Openai baru bernilai gembar-gembur? Apr 13, 2025 am 10:18 AM

Pengenalan OpenAI telah mengeluarkan model barunya berdasarkan seni bina "strawberi" yang sangat dijangka. Model inovatif ini, yang dikenali sebagai O1, meningkatkan keupayaan penalaran, yang membolehkannya berfikir melalui masalah MOR

Bagaimana untuk menambah lajur dalam SQL? - Analytics Vidhya Bagaimana untuk menambah lajur dalam SQL? - Analytics Vidhya Apr 17, 2025 am 11:43 AM

Pernyataan Jadual Alter SQL: Menambah lajur secara dinamik ke pangkalan data anda Dalam pengurusan data, kebolehsuaian SQL adalah penting. Perlu menyesuaikan struktur pangkalan data anda dengan cepat? Pernyataan Jadual ALTER adalah penyelesaian anda. Butiran panduan ini menambah colu

3 Kaedah untuk menjalankan Llama 3.2 - Analytics Vidhya 3 Kaedah untuk menjalankan Llama 3.2 - Analytics Vidhya Apr 11, 2025 am 11:56 AM

Meta's Llama 3.2: Powerhouse AI Multimodal Model multimodal terbaru Meta, Llama 3.2, mewakili kemajuan yang ketara dalam AI, yang membanggakan pemahaman bahasa yang dipertingkatkan, ketepatan yang lebih baik, dan keupayaan penjanaan teks yang unggul. Keupayaannya t

See all articles