Buat DataFrame pertama anda di Pyspark
Membuat DataFrame pertama anda di Pyspark
Mewujudkan DataFrame di Pyspark, struktur data teras untuk Spark, adalah langkah asas untuk sebarang tugas pemprosesan data. Terdapat beberapa cara untuk mencapai matlamat ini, bergantung kepada sumber data anda. Pendekatan yang paling mudah dan paling biasa adalah menggunakan kaedah spark.read.csv()
, yang akan kita pelajari secara terperinci kemudian. Walau bagaimanapun, sebelum menyelam ke dalam spesifik, mari kita sediakan persekitaran percikan kami. Anda perlu memasang Pyspark. Jika tidak, anda boleh memasangnya menggunakan pip install pyspark
. Kemudian, anda perlu memulakan percikan, yang merupakan titik masuk ke fungsi percikan. Ini biasanya dilakukan seperti berikut:
from pyspark.sql import SparkSession spark = SparkSession.builder.appName("DataFrameCreation").getOrCreate()
Ini mewujudkan objek SparkSession bernama spark
. Kami akan menggunakan objek ini sepanjang contoh kami. Ingat untuk menghentikan sesi apabila selesai menggunakan spark.stop()
. Sekarang, kami sudah bersedia untuk membuat data data pertama kami.
Membuat DataFrame dari fail CSV di Pyspark
membaca data dari fail CSV adalah kaedah yang lazim untuk membuat dataframe di Pyspark. Fungsi spark.read.csv()
menawarkan fleksibiliti dalam mengendalikan pelbagai ciri CSV. Mari kita anggap anda mempunyai fail CSV bernama data.csv
dalam direktori kerja anda dengan struktur berikut:
Name,Age,City Alice,25,New York Bob,30,London Charlie,28,Paris
Inilah cara anda boleh membuat dataFrame dari fail CSV ini:
from pyspark.sql import SparkSession spark = SparkSession.builder.appName("DataFrameCreation").getOrCreate() df = spark.read.csv("data.csv", header=True, inferSchema=True) df.show() spark.stop()
Jika pilihan ini tidak ditentukan, Spark akan menganggap baris pertama adalah data dan akan memberikan jenis data lalai (biasanya rentetan) ke semua lajur. Anda secara jelas boleh menentukan skema dengan menggunakan objek <🎜 🎜> untuk lebih banyak kawalan, yang sangat bermanfaat untuk dataset kompleks atau besar.
- dari senarai senarai atau tuples: anda boleh membuat dataFrame secara langsung dari senarai Python atau tuples. Setiap senarai/tuple dalaman mewakili baris, dan senarai dalaman/tuple pertama mentakrifkan nama lajur. DataFrame.
from pyspark.sql import SparkSession spark = SparkSession.builder.appName("DataFrameCreation").getOrCreate()
-
Ini amat berguna untuk data separa berstruktur. Membaca dari fail parket sering lebih cepat daripada CSV. Gunakan untuk ini. Objek menyediakan kaedah untuk mengakses sumber -sumber ini. Kesalahan. Secara jelas menentukan skema sering lebih selamat, terutamanya untuk dataset yang besar dengan jenis data yang pelbagai. Pertimbangkan memisahkan data anda atau menggunakan teknik lain seperti untuk mengehadkan bilangan rekod yang dibaca setiap fail. menghalang pemprosesan. Pembersihan data dan pra -proses adalah penting sebelum membuat dataframe untuk menangani ini. Pantau penggunaan memori dengan teliti, terutamanya semasa penciptaan data, untuk mencegah kesilapan keluar-memori. Memilih kaedah yang sesuai untuk penciptaan DataFrame berdasarkan sumber dan saiz data anda adalah kunci untuk mengoptimumkan prestasi.
Atas ialah kandungan terperinci Buat DataFrame pertama anda di Pyspark. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Fastapi ...

Menggunakan Python di Terminal Linux ...

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...
