Model-Model Bahasa Visi (VLMS): QWEN2 Penalaan Fine untuk Analisis Imej Penjagaan Kesihatan
Model-model bahasa penglihatan (VLMS), subset multimodal AI, cemerlang pada memproses data visual dan teks untuk menghasilkan output teks. Tidak seperti model bahasa yang besar (LLMS), VLMS memanfaatkan pembelajaran sifar-tembakan dan keupayaan generalisasi yang kuat, mengendalikan tugas tanpa latihan khusus sebelum ini. Aplikasi terdiri daripada pengenalan objek dalam imej ke pemahaman dokumen yang kompleks. Butiran artikel ini menyempurnakan Alibaba QWEN2 7B VLM pada dataset radiologi penjagaan kesihatan tersuai.
Blog ini menunjukkan penalaan model bahasa visual QWEN2 7B dari Alibaba menggunakan dataset penjagaan kesihatan tersuai imej radiologi dan pasangan soal jawab.
Objektif Pembelajaran:
Jadual Kandungan:
Pengenalan kepada Model Bahasa Visi
Soalan Visual Menjawab DijelaskanVLMS adalah model multimodal yang memproses kedua -dua imej dan teks. Model generatif ini mengambil imej dan teks sebagai input, menghasilkan output teks. VLM yang besar menunjukkan keupayaan sifar-tembakan yang kuat, penyebaran yang berkesan, dan keserasian dengan pelbagai jenis imej. Aplikasi termasuk sembang berasaskan imej, pengiktirafan imej yang didorong oleh arahan, VQA, pemahaman dokumen, dan kapsyen imej.
Banyak VLMS menangkap sifat imej spatial, menghasilkan kotak batas atau topeng segmentasi untuk pengesanan objek dan penyetempatan. VLM besar sedia ada berbeza dalam data latihan, kaedah pengekodan imej, dan keupayaan keseluruhan.
menjawab soalan visual (VQA):
VQA adalah tugas AI yang memberi tumpuan kepada menjana jawapan yang tepat untuk soalan mengenai imej. Model VQA mesti memahami kedua -dua kandungan imej dan semantik soalan, menggabungkan pengiktirafan imej dan pemprosesan bahasa semulajadi. Sebagai contoh, diberi imej anjing di atas sofa dan soalan "Di mana anjing itu?", Model itu mengenal pasti anjing dan sofa, kemudian menjawab "di sofa."
Fine-Tuning VLMS untuk aplikasi khusus domain:
senario utama untuk penalaan halus:
unsloth: rangka kerja penalaan halus:
Unsloth adalah rangka kerja untuk model bahasa yang besar dan bahasa penglihatan yang baik. Ciri -ciri utama termasuk:
pelaksanaan kod (4-bit QWEN2 7B VLM):
Bahagian berikut memperincikan pelaksanaan kod, termasuk import ketergantungan, pemuatan dataset, konfigurasi model, dan latihan dan penilaian menggunakan Bertscore. Kod lengkap tersedia pada [GitHub Repo] (masukkan pautan github di sini).
(coretan kod dan penjelasan untuk langkah-langkah 1-10 akan dimasukkan di sini, mencerminkan struktur dan kandungan dari input asal, tetapi dengan penjelasan yang sedikit dan berpotensi lebih ringkas di mana mungkin. Ini akan mengekalkan perincian teknikal sambil meningkatkan kebolehbacaan dan aliran.) Kesimpulan:
Fine-penalaan VLMs seperti QWEN2 dengan ketara meningkatkan prestasi pada tugas khusus domain. Metrik Bertscore yang tinggi menunjukkan keupayaan model untuk menjana tindak balas yang tepat dan kontekstual yang relevan. Kesesuaian ini sangat penting untuk pelbagai industri yang perlu menganalisis data multimodal.
Takeaways utama:
Soalan -soalan yang sering ditanya:
(bahagian Soalan Lazim akan dimasukkan di sini, mencerminkan input asal.)
(Kalimat akhir mengenai analitik Vidhya juga akan dimasukkan.)
Atas ialah kandungan terperinci Finetuning qwen2 7b vlm menggunakan unsloth untuk radiologi vqa. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!