


Bagaimana cara menggunakan panda untuk melaksanakan statistik lajur-ke-lajur data?
Melaksanakan lajur ke statistik dengan cekap dengan panda
Dalam analisis data, penyusunan semula fleksibel dan analisis statistik data sering diperlukan. Sebagai contoh, tukar dataset yang mengandungi tarikh dan jenis ke dalam jadual statistik pelbagai jenis tuduhan setiap hari. Artikel ini akan menunjukkan cara menggunakan perpustakaan Pandas untuk melakukan ini dengan cekap.
Katakan kami mempunyai bingkai data (dataframe) yang mengandungi dua lajur 'tarikh' (tarikh) dan 'jenis' (jenis), dan contoh data adalah seperti berikut:
<code>date type 2024-01-01 1 2024-01-01 2 2024-01-01 1 2024-01-02 3 2024-01-02 2 2024-01-02 3 2024-01-02 1 2024-01-02 1 2024-01-03 1 2024-01-03 4 2024-01-03 2 2024-01-03 5 ...</code>
Matlamatnya adalah untuk menukar data ke dalam format berikut, menunjukkan kiraan setiap jenis pada setiap hari:
<code>date type1 type2 type3 type4 type5 2024-01-01 2 1 0 0 0 2024-01-02 2 1 2 0 0 2024-01-03 1 1 0 1 1 ...</code>
Kita boleh menggunakan fungsi pandas ' pd.get_dummies()
dan groupby()
untuk mencapai matlamat ini. Inilah kod python:
Import Pandas sebagai PD # Contoh data = { 'date': ['2024-01-01', '2024-01-01', '2024-01-01', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-03', '2024-01-03', '2024-01-03'], 'Jenis': [1, 2, 1, 3, 2, 3, 1, 1, 1, 4, 2, 5] } df = pd.dataFrame (data) # Gunakan get_dummies () untuk pengekodan satu-panas df_encoded = pd.get_dummies (df, columns = ['type'], prefix = 'type') # Gunakan kumpulanBy () dan jumlah () untuk statistik kumpulan hasil = df_encoded.groupby ('tarikh'). Sum () # Cetak hasil cetak (df_encoded) Cetak ("-" * 60) cetak (hasil)
Kod pertama menggunakan pd.get_dummies()
untuk menukar lajur 'jenis' ke dalam pembolehubah dummy, dan kemudian menggunakan groupby('date').sum()
untuk mengumpulkan tarikh dan jumlah setiap jenis untuk akhirnya mendapatkan jadual statistik sasaran.
Hasil output adalah serupa dengan:
<code> date type_1 type_2 type_3 type_4 type_5 0 2024-01-01 1 0 0 0 0 1 2024-01-01 0 1 0 0 0 2 2024-01-01 1 0 0 0 0 3 2024-01-02 0 0 1 0 0 4 2024-01-02 0 1 0 0 0 5 2024-01-02 0 0 1 0 0 6 2024-01-02 1 0 0 0 0 7 2024-01-02 1 0 0 0 0 8 2024-01-03 1 0 0 0 0 9 2024-01-03 0 0 0 1 0 10 2024-01-03 0 1 0 0 0 11 2024-01-03 0 0 0 0 1 ------------------------------------------------------------ type_1 type_2 type_3 type_4 type_5 date 2024-01-01 2 1 0 0 0 2024-01-02 2 1 2 0 0 2024-01-03 1 1 0 1 1</code>
Melalui kod ringkas ini, kita dapat dengan mudah melengkapkan statistik penukaran lajur data PANDAS untuk meningkatkan kecekapan analisis data.
Atas ialah kandungan terperinci Bagaimana cara menggunakan panda untuk melaksanakan statistik lajur-ke-lajur data?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Untuk menjalankan kod python dalam teks luhur, anda perlu memasang plug-in python terlebih dahulu, kemudian buat fail .py dan tulis kod itu, dan akhirnya tekan Ctrl B untuk menjalankan kod, dan output akan dipaparkan dalam konsol.

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

Golang lebih baik daripada Python dari segi prestasi dan skalabiliti. 1) Ciri-ciri jenis kompilasi Golang dan model konkurensi yang cekap menjadikannya berfungsi dengan baik dalam senario konvensional yang tinggi. 2) Python, sebagai bahasa yang ditafsirkan, melaksanakan perlahan -lahan, tetapi dapat mengoptimumkan prestasi melalui alat seperti Cython.

Kod penulisan dalam Kod Visual Studio (VSCode) adalah mudah dan mudah digunakan. Hanya pasang VSCode, buat projek, pilih bahasa, buat fail, tulis kod, simpan dan jalankannya. Kelebihan vscode termasuk sumber lintas platform, bebas dan terbuka, ciri-ciri yang kuat, sambungan yang kaya, dan ringan dan cepat.

Running Python Code di Notepad memerlukan Python Executable dan NPPExec plug-in untuk dipasang. Selepas memasang Python dan menambahkan laluannya, konfigurasikan perintah "python" dan parameter "{current_directory} {file_name}" dalam plug-in nppexec untuk menjalankan kod python melalui kunci pintasan "f6" dalam notepad.
