Rumah pembangunan bahagian belakang Tutorial Python python两种遍历字典(dict)的方法比较

python两种遍历字典(dict)的方法比较

Jun 16, 2016 am 08:44 AM
dict python Kamus traverse

python以其优美的语法和方便的内置数据结构,赢得了不少程序员的亲睐。
其中有个很有用的数据结构,就是字典(dict),使用非常简单。说到遍历一个dict结构,我想大多数人都会想到 for key in dictobj 的方法,确实这个方法在大多数情况下都是适用的。但是并不是完全安全,请看下面这个例子:

复制代码 代码如下:

#这里初始化一个dict
>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
#本意是遍历dict,发现元素的值是0的话,就删掉
>>> for k in d:
...   if d[k] == 0:
...     del(d[k])
...
Traceback (most recent call last):
  File "", line 1, in
RuntimeError: dictionary changed size during iteration
#结果抛出异常了,两个0的元素,也只删掉一个。
>>> d
{'a': 1, 'c': 1, 'd': 0}

>>> d = {'a':1, 'b':0, 'c':1, 'd':0}
#d.keys() 是一个下标的数组
>>> d.keys()
['a', 'c', 'b', 'd']
#这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。
>>> for k in d.keys():
...   if d[k] == 0:
...     del(d[k])
...
>>> d
{'a': 1, 'c': 1}
#结果也是对的
>>>
其实,这个例子是我简化过的,我是在一个多线程的程序里发现这个问题的,所以,我的建议是:遍历dict的时候,养成使用 for k in d.keys() 的习惯。
不过,如果是多线程的话,这样就绝对安全吗?也不见得:当两个线程都取完d.keys()以后,如果两个线程都去删同一个key的话,先删的会成功,后删的那个肯定会报 KeyError ,这个看来只能通过其他方式来保证了。


另一篇:dict 两种遍历方式的性能对比

关于纠结dict遍历中带括号与不带括号的性能问题

复制代码 代码如下:

for (d,x) in dict.items():
     print "key:"+d+",value:"+str(x)

for d,x in dict.items():
    print "key:"+d+",value:"+str(x)

带括号和不带括号性能测试结果:

复制代码 代码如下:

测试结果
测试条数:15
带括号开始时间:2012-06-14 12:13:37.375000
带括号结束时间:2012-06-14 12:13:37.375000
时间间隔:0:00:00
不带括号开始时间:2012-06-14 12:13:37.375000
不带括号结束时间:2012-06-14 12:13:37.375000
时间间隔:0:00:00

测试条数:50
带括号开始时间:2012-06-14 12:13:57.921000
带括号结束时间:2012-06-14 12:13:57.921000
时间间隔:0:00:00
不带括号开始时间:2012-06-14 12:13:57.921000
不带括号结束时间:2012-06-14 12:13:57.937000
时间间隔:0:00:00.016000
测试条数:100
带括号开始时间:2012-06-14 11:53:57.453000
带括号结束时间:2012-06-14 11:53:57.468000
时间间隔:0:00:00.015000
不带括号开始时间:2012-06-14 11:53:57.468000
不带括号结束时间:2012-06-14 11:53:57.531000
时间间隔:0:00:00.063000

测试条数:150
带括号开始时间:2012-06-14 12:00:54.812000
带括号结束时间:2012-06-14 12:00:54.828000
时间间隔:0:00:00.016000
不带括号开始时间:2012-06-14 12:00:54.828000
不带括号结束时间:2012-06-14 12:00:54.921000
时间间隔:0:00:00.093000

测试条数:200
带括号开始时间:2012-06-14 11:59:54.609000
带括号结束时间:2012-06-14 11:59:54.687000
时间间隔:0:00:00.078000
不带括号开始时间:2012-06-14 11:59:54.687000
不带括号结束时间:2012-06-14 11:59:54.734000
时间间隔:0:00:00.047000

测试条数:500
带括号开始时间:2012-06-14 11:54:39.906000
带括号结束时间:2012-06-14 11:54:40.078000
时间间隔:0:00:00.172000
不带括号开始时间:2012-06-14 11:54:40.078000
不带括号结束时间:2012-06-14 11:54:40.125000
时间间隔:0:00:00.047000

测试条数:1000
带括号开始时间:2012-06-14 11:54:49.171000
带括号结束时间:2012-06-14 11:54:49.437000
时间间隔:0:00:00.266000
不带括号开始时间:2012-06-14 11:54:49.437000
不带括号结束时间:2012-06-14 11:54:49.609000
时间间隔:0:00:00.172000

测试条数:2000
带括号开始时间:2012-06-14 11:54:58.921000
带括号结束时间:2012-06-14 11:54:59.328000
时间间隔:0:00:00.407000
不带括号开始时间:2012-06-14 11:54:59.328000
不带括号结束时间:2012-06-14 11:54:59.687000
时间间隔:0:00:00.359000

测试条数:5000
带括号开始时间:2012-06-14 11:55:05.781000
带括号结束时间:2012-06-14 11:55:06.734000
时间间隔:0:00:00.953000
不带括号开始时间:2012-06-14 11:55:06.734000
不带括号结束时间:2012-06-14 11:55:07.609000
时间间隔:0:00:00.875000

测试条数:10000
带括号开始时间:2012-06-14 11:55:15.656000
带括号结束时间:2012-06-14 11:55:17.390000
时间间隔:0:00:01.734000
不带括号开始时间:2012-06-14 11:55:17.390000
不带括号结束时间:2012-06-14 11:55:19.109000
时间间隔:0:00:01.719000

测试条数:20000
带括号开始时间:2012-06-14 12:19:14.921000
带括号结束时间:2012-06-14 12:19:18.593000
时间间隔:0:00:03.672000
不带括号开始时间:2012-06-14 12:19:18.593000
不带括号结束时间:2012-06-14 12:19:22.218000
时间间隔:0:00:03.625000


我们可以看出,dict条数在200一下的时候是带括号的性能比较高一点,但是在200条以上的数据后不带括号的执行时间会少些.

下面是测试代码:

复制代码 代码如下:

测试Code
#-*- coding: utf-8 -*-
import datetime,codecs

dict = {}

for i in xrange(0,20000):
    dict.setdefault("name"+str(i))
    dict["name"+str(i)]="name"

s=codecs.open(r'c:\\dict.txt','a', 'utf-8')

def write(des):
    s.write(des.decode("utf-8"))

write("测试条数:")
write(str(len(dict))+"\r\n")
write("带括号开始时间:")
a=datetime.datetime.now()
s.write(str(a)+"\r\n")

for (d,x) in dict.items():
    print "key:"+d+",value:"+str(x)
write("带括号结束时间:")
b=datetime.datetime.now()
write(str(b)+"\r\n")
write("时间间隔:")
write(str(b-a)+"\r\n")

write("不带括号开始时间:")
c=datetime.datetime.now()
write(str(c)+"\r\n")
for d,x in dict.items():
    print "key:"+d+",value:"+str(x)
write("不带括号结束时间:")
d=datetime.datetime.now()
write(str(d)+"\r\n")
write("时间间隔:")
write(str(d-c)+"\r\n")
write("\r\n")
s.close()

中文乱码问题有没有很好的解决办法....?

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Hadidb: Pangkalan data yang ringan dan berskala mendatar di Python Hadidb: Pangkalan data yang ringan dan berskala mendatar di Python Apr 08, 2025 pm 06:12 PM

Hadidb: Pangkalan data Python yang ringan, tinggi, Hadidb (Hadidb) adalah pangkalan data ringan yang ditulis dalam Python, dengan tahap skalabilitas yang tinggi. Pasang HadIdb menggunakan pemasangan PIP: Pengurusan Pengguna PipInstallHadidB Buat Pengguna: CreateUser () Kaedah untuk membuat pengguna baru. Kaedah pengesahan () mengesahkan identiti pengguna. dariHadidb.OperationImportuserer_Obj = user ("admin", "admin") user_obj.

Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Kaedah Navicat untuk melihat kata laluan pangkalan data MongoDB Apr 08, 2025 pm 09:39 PM

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Bagaimana untuk mengoptimumkan prestasi MySQL untuk aplikasi beban tinggi? Bagaimana untuk mengoptimumkan prestasi MySQL untuk aplikasi beban tinggi? Apr 08, 2025 pm 06:03 PM

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

Cara Menggunakan AWS Glue Crawler dengan Amazon Athena Cara Menggunakan AWS Glue Crawler dengan Amazon Athena Apr 09, 2025 pm 03:09 PM

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.

Bolehkah mysql menyambung ke pelayan SQL Bolehkah mysql menyambung ke pelayan SQL Apr 08, 2025 pm 05:54 PM

Tidak, MySQL tidak dapat menyambung terus ke SQL Server. Tetapi anda boleh menggunakan kaedah berikut untuk melaksanakan interaksi data: Gunakan middleware: data eksport dari MySQL ke format pertengahan, dan kemudian mengimportnya ke SQL Server melalui middleware. Menggunakan Pangkalan Data Pangkalan Data: Alat perniagaan menyediakan antara muka yang lebih mesra dan ciri -ciri canggih, pada dasarnya masih dilaksanakan melalui middleware.

Cara memulakan pelayan dengan redis Cara memulakan pelayan dengan redis Apr 10, 2025 pm 08:12 PM

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.

See all articles