Rumah pembangunan bahagian belakang Tutorial Python python批量导出导入MySQL用户的方法

python批量导出导入MySQL用户的方法

Jun 16, 2016 am 08:46 AM

数据库迁移(A -> B),需要把用户也迁移过去,而用户表(mysql.user)有上百个用户。有2种方法进行快速迁移:
1,在同版本的条件下,直接备份A服务器的mysql数据库,还原到B服务器。
2,要是不同版本的数据(5.1 -> 5.5),很可能mysql数据库下面的一些表结构,甚至表数据的默认值都不一样,按照1的方法进行迁移,虽然最后也是可以正常访问,但是还是有些不太放心,很可能会影响到了B服务器上的MySQL,这样就需要用命令行来生成帐号了,这样是最安全和放心的。下面用python脚本来进行批量导出:

复制代码 代码如下:

#!/bin/env python
# -*- encoding: utf-8 -*-
#-----------------------------------------
# Name:        mysql_user_dump.py
# Purpose:     批量导出用户
# Author:      zhoujy
# Created:     2013-05-28
#-----------------------------------------
import MySQLdb

def get_data(conn):
    query  = 'select user,host from mysql.user order by user'
    cursor = conn.cursor()
    cursor.execute(query)
    lines  = cursor.fetchall()
    return lines

def output_data(conn,rows):
    for user,host in rows:
        query  = "show grants for '%s'@'%s'" %(user,host)
        cursor = conn.cursor()
        cursor.execute(query)
        show_pri = cursor.fetchall()
        for grants_command in show_pri:
            print ''.join(grants_command)+';'
        print ''

if __name__ =='__main__':
    conn = MySQLdb.connect(host='localhost',user='root',passwd='123456',db='mysql',port=3306,charset='utf8')
    rows  = get_data(conn)
    output_data(conn,rows)

运行:python mysql_user_dump.py

复制代码 代码如下:

GRANT REPLICATION SLAVE ON *.* TO 'rep'@'192.168.234.%' IDENTIFIED BY PASSWORD '*6BB4837EB74329105EE4568DDA7DC67ED2CA2AD9';

GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' IDENTIFIED BY PASSWORD '*6BB4837EB74329105EE4568DDA7DC67ED2CA2AD9' WITH GRANT OPTION;

GRANT ALL PRIVILEGES ON *.* TO 'root'@'192.168.234.%' IDENTIFIED BY PASSWORD '*6BB4837EB74329105EE4568DDA7DC67ED2CA2AD9';

GRANT USAGE ON *.* TO 'test'@'192.168.234.%' IDENTIFIED BY PASSWORD '*2A032F7C5BA932872F0F045E0CF6B53CF702F2C5';
GRANT SELECT, INSERT, UPDATE, DELETE ON `test`.* TO 'test'@'192.168.234.%';

GRANT USAGE ON *.* TO 'zzz_test'@'192.168.234.%' IDENTIFIED BY PASSWORD '*2A032F7C5BA932872F0F045E0CF6B53CF702F2C5';
GRANT SELECT, INSERT, UPDATE, DELETE ON `zzz%`.* TO 'zzz_test'@'192.168.234.%';

最后把这些命令在B上面执行就好了,也可以在执行脚本的时候重定向到一个sql文件:如:user.sql,在到B服务器的数据库里面执行source user.sql 就完成了导入工作。
第2个方法最好,不需要1里面的删表和重建表的操作,最安全。

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail Teks Mar 05, 2025 am 09:58 AM

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Penapisan gambar di python Penapisan gambar di python Mar 03, 2025 am 09:44 AM

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Bagaimana saya menggunakan sup yang indah untuk menghuraikan html? Mar 10, 2025 pm 06:54 PM

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch? Mar 10, 2025 pm 06:52 PM

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Pengenalan kepada pengaturcaraan selari dan serentak di Python Pengenalan kepada pengaturcaraan selari dan serentak di Python Mar 03, 2025 am 10:32 AM

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

Cara Melaksanakan Struktur Data Anda Sendiri di Python Cara Melaksanakan Struktur Data Anda Sendiri di Python Mar 03, 2025 am 09:28 AM

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE

Serialization dan deserialisasi objek python: Bahagian 1 Serialization dan deserialisasi objek python: Bahagian 1 Mar 08, 2025 am 09:39 AM

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Modul Matematik dalam Python: Statistik Modul Matematik dalam Python: Statistik Mar 09, 2025 am 11:40 AM

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

See all articles