php+mysql查询优化简单实例,phpmysql查询实例_PHP教程
php+mysql查询优化简单实例,phpmysql查询实例
本文实例分析了php+mysql查询优化的方法。分享给大家供大家参考。具体分析如下:
PHP+Mysql是一个最经常使用的黄金搭档,它们俩配合使用,能够发挥出最佳性能,当然,如果配合Apache使用,就更加Perfect了.
因此,需要做好对mysql的查询优化,下面通过一个简单的例子,展现不同的SQL语句对于查询速度的影响.
存在这样的一张表test,它有一个自增的id作为主索引,现在要查询id号处于某一个范围内的记录,可以使用如下SQL语句:
FROM `test`
order by id asc
limit 208888,50
这条SQL语句的意思是从id号为208888的记录开始向后取50条记录,在一个30万条记录的数据库中测试,在主索引都已经建立好的情况下,执行这条语句的时间为40~50秒,那么有没有更快SQL语句来执行呢?显然是有的,看看下面这条SQL语句:
FROM `test`
WHERE id
BETWEEN 208838
AND 208888
这条语句使用了一个条件进行过滤,在实际中测试的执行时间约为0.06秒.
究其原因,是因为虽然id属性上已经有索引了,但是排序仍然是一个非常高代价的操作,要慎用,而第二个语句,就可以让MySql充分利用数据库中已经建立好的B+树索引,所以查找起来速度相当快,是原来的几百倍.
由此可见,网站开发者在使用SQL语句的时候,一定要小心谨慎,因为一个疏忽大意的SQL语句,可能使得你的网站访问速度急剧下降,后台数据库面临巨大压力,并且很快陷入无法打开页面的窘境.
希望本文所述对大家的php+mysql程序设计有所帮助。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Dalam pangkalan data MySQL, hubungan antara pengguna dan pangkalan data ditakrifkan oleh kebenaran dan jadual. Pengguna mempunyai nama pengguna dan kata laluan untuk mengakses pangkalan data. Kebenaran diberikan melalui perintah geran, sementara jadual dibuat oleh perintah membuat jadual. Untuk mewujudkan hubungan antara pengguna dan pangkalan data, anda perlu membuat pangkalan data, membuat pengguna, dan kemudian memberikan kebenaran.

Penyederhanaan Integrasi Data: AmazonRDSMYSQL dan Integrasi Data Integrasi Zero ETL Redshift adalah di tengah-tengah organisasi yang didorong oleh data. Proses tradisional ETL (ekstrak, menukar, beban) adalah kompleks dan memakan masa, terutamanya apabila mengintegrasikan pangkalan data (seperti Amazonrdsmysql) dengan gudang data (seperti redshift). Walau bagaimanapun, AWS menyediakan penyelesaian integrasi ETL sifar yang telah mengubah keadaan ini sepenuhnya, menyediakan penyelesaian yang mudah, hampir-sebenar untuk penghijrahan data dari RDSMYSQL ke redshift. Artikel ini akan menyelam ke integrasi RDSMYSQL Zero ETL dengan redshift, menjelaskan bagaimana ia berfungsi dan kelebihan yang dibawa kepada jurutera dan pemaju data.

MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Panduan Pengoptimuman Prestasi Pangkalan Data MySQL Dalam aplikasi yang berintensifkan sumber, pangkalan data MySQL memainkan peranan penting dan bertanggungjawab untuk menguruskan urus niaga besar-besaran. Walau bagaimanapun, apabila skala aplikasi berkembang, kemunculan prestasi pangkalan data sering menjadi kekangan. Artikel ini akan meneroka satu siri strategi pengoptimuman prestasi MySQL yang berkesan untuk memastikan aplikasi anda tetap cekap dan responsif di bawah beban tinggi. Kami akan menggabungkan kes-kes sebenar untuk menerangkan teknologi utama yang mendalam seperti pengindeksan, pengoptimuman pertanyaan, reka bentuk pangkalan data dan caching. 1. Reka bentuk seni bina pangkalan data dan seni bina pangkalan data yang dioptimumkan adalah asas pengoptimuman prestasi MySQL. Berikut adalah beberapa prinsip teras: Memilih jenis data yang betul dan memilih jenis data terkecil yang memenuhi keperluan bukan sahaja dapat menjimatkan ruang penyimpanan, tetapi juga meningkatkan kelajuan pemprosesan data.

1. Gunakan indeks yang betul untuk mempercepatkan pengambilan data dengan mengurangkan jumlah data yang diimbas memilih*frommployeesWherElast_name = 'Smith'; Jika anda melihat lajur jadual beberapa kali, buat indeks untuk lajur tersebut. Jika anda atau aplikasi anda memerlukan data dari pelbagai lajur mengikut kriteria, buat indeks komposit 2. Elakkan pilih * Hanya lajur yang diperlukan, jika anda memilih semua lajur yang tidak diingini, ini hanya akan memakan lebih banyak pelayan dan menyebabkan pelayan melambatkan pada masa yang tinggi atau kekerapan misalnya, jadual anda

Untuk mengisi nama pengguna dan kata laluan MySQL: 1. Tentukan nama pengguna dan kata laluan; 2. Sambungkan ke pangkalan data; 3. Gunakan nama pengguna dan kata laluan untuk melaksanakan pertanyaan dan arahan.

Penjelasan terperinci mengenai atribut asid asid pangkalan data adalah satu set peraturan untuk memastikan kebolehpercayaan dan konsistensi urus niaga pangkalan data. Mereka menentukan bagaimana sistem pangkalan data mengendalikan urus niaga, dan memastikan integriti dan ketepatan data walaupun dalam hal kemalangan sistem, gangguan kuasa, atau pelbagai pengguna akses serentak. Gambaran keseluruhan atribut asid Atomicity: Transaksi dianggap sebagai unit yang tidak dapat dipisahkan. Mana -mana bahagian gagal, keseluruhan transaksi dilancarkan kembali, dan pangkalan data tidak mengekalkan sebarang perubahan. Sebagai contoh, jika pemindahan bank ditolak dari satu akaun tetapi tidak meningkat kepada yang lain, keseluruhan operasi dibatalkan. Begintransaction; UpdateAcCountSsetBalance = Balance-100Wh

MySQL sesuai untuk pemula kerana mudah dipasang, kuat dan mudah untuk menguruskan data. 1. Pemasangan dan konfigurasi mudah, sesuai untuk pelbagai sistem operasi. 2. Menyokong operasi asas seperti membuat pangkalan data dan jadual, memasukkan, menanyakan, mengemas kini dan memadam data. 3. Menyediakan fungsi lanjutan seperti menyertai operasi dan subqueries. 4. Prestasi boleh ditingkatkan melalui pengindeksan, pengoptimuman pertanyaan dan pembahagian jadual. 5. Sokongan sokongan, pemulihan dan langkah keselamatan untuk memastikan keselamatan data dan konsistensi.
